¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
20200928_È«Á¤Çö
ÀÛ¼ºÀÏ
2020-09-28
Á¶È¸¼ö
102


1. Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., ... & Dean, J. S. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature climate change, 3(3), 292-297.

https://doi.org/10.1038/nclimate1693

2. Hartmann, H., Ziegler, W., & Trumbore, S. (2013). Lethal drought leads to reduction in nonstructural carbohydrates in N orway spruce tree roots but not in the canopy. Functional Ecology, 27(2), 413-427.

https://doi.org/10.1111/1365-2435.12046

3. Mencuccini, M. (2014). Temporal scales for the coordination of tree carbon and water economies during droughts. Tree Physiology, 34(5), 439-442.

https://doi.org/10.1093/treephys/tpu029
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
20200929_Narayan Bhusal
/ Narayan Bhusal
Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH Plant, Cell and Environment (2016) 39, 2350–2360 doi: 10.1111/pce.12767
ÀÌÀü±Û
20200928_±è±ÙÈ¿
/ ±è±ÙÈ¿
Yli-Pelkonen, V., Viippola, V., Kotze, D. J., & Setälä, H. (2020). Impacts of urban roadside forest patches on NO2 concentrations.Atmospheric Environment, 117584. https://www.sciencedirect.com/science/article/pii/S1352231020303186?casa_token=hoG7ST69_x4AAAAA:tdFOiZ0Oky5MDujSjVO_FpNF..