¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
20210823_±è¼­Çö
ÀÛ¼ºÀÏ
2021-08-23
Á¶È¸¼ö
74


1. Cervantes-Gámez, R. G., Bueno-Ibarra, M. A., Cruz-Mendívil, A., Calderón-Vázquez, C. L., Ramírez-Douriet, C. M., Maldonado-Mendoza, I. E., ... & López-Meyer, M. (2016). Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA-seq analysis. Plant Molecular Biology Reporter, 34(1), 89-102.

https://doi.org/10.1007/s11105-015-0903-9

2. Ren, Y. R., Yang, Y. Y., Zhang, R., You, C. X., Zhao, Q., & Hao, Y. J. (2019). MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Science, 288, 110219.

https://doi.org/10.1016/j.plantsci.2019.110219

3. Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Douira, A., ... & Meddich, A. (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants, 9(1), 80.

https://doi.org/10.3390/plants9010080
 
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
20210823_È«Á¤Çö
/ jhhong
Corada, K., Woodward, H., Alaraj, H., Collins, C. M., & de Nazelle, A. (2020). A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas.Environmental Pollution, 116104. https://doi.org/10.1016/j.envpol.2020.116104
ÀÌÀü±Û
20210822_Çã¿ìÁø
/ Çã¿ìÁø
Rötzer, T., et al. "Stem and root diameter growth of European beech and Norway spruce under extreme drought."Forest Ecology and Management406 (2017): 184-195. https://doi.org/10.1016/j.foreco.2017.09.070