¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
20210122_¹ÚÂù¿À
ÀÛ¼ºÀÏ
2021-01-22
Á¶È¸¼ö
123


1. Yang, J., Tian, H., Pan, S., Chen, G., Zhang, B., & Dangal, S. (2018). Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global change biology24(5), 1919-1934.
 
https://doi.org/10.1111/gcb.14056

2. Uriarte, M., Muscarella, R., & Zimmerman, J. K. (2018). Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Global change biology24(2), 692-704.
 
https://doi.org/10.1111/gcb.14000

3. Savva, Y., & Berninger, F. (2010). Sulphur deposition causes a large‐scale growth decline in boreal forests in Eurasia. Global Biogeochemical Cycles24(3).
 
https://doi.org/10.1029/2009GB003749


 
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
20210122_Narayan Bhusal
/ Narayan Bhusal
Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch Global Change Biology (2013) 19, 3184–3199, doi: 10.1111/gcb.12268
ÀÌÀü±Û
20210122_Jihyeon Jeon
/ Jihyeon Jeon
Modeling plant–water interactions:an ecohydrological overview fromthe cell to the global scale https://doi.org/10.1002/wat2.1125