¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
20210113_Çã¿ìÁø
ÀÛ¼ºÀÏ
2021-01-13
Á¶È¸¼ö
153


1. Luke McCormack, M., et al. "Regional scale patterns of fine root lifespan and turnover under current and future climate." Global Change Biology 19.6 (2013): 1697-1708.
https://doi.org/10.1111/gcb.12163

2. Adams, Thomas S., M. Luke McCormack, and David M. Eissenstat. "Foraging strategies in trees of different root morphology: the role of root lifespan." Tree Physiology 33.9 (2013): 940-948.
https://doi.org/10.1093/treephys/tpt067

3. Strand, Allan E., et al. "Irreconcilable differences: fine-root life spans and soil carbon persistence." Science 319.5862 (2008): 456-458.
DOI: 10.1126/science.1151382
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
20200113_Narayan Bhusal
/ Narayan Bhusal
Physiological and biochemical characterization of six Prunus rootstocks in response to flooding Environmental and Experimental Botany https://doi.org/10.1016/j.envexpbot.2020.104368
ÀÌÀü±Û
20210113_±è±ÙÈ¿
/ ±è±ÙÈ¿
Hochberg, U., Rockwell, F. E., Holbrook, N. M., & Cochard, H. (2018). Iso/anisohydry: a plant–environment interaction rather than a simple hydraulic trait.Trends in Plant Science,23(2), 112-120. https://www.sciencedirect.com/science/article/pii/S1360138517302546?casa_token=UJCXWFQ7cDoAA..