¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
20201201_È«Á¤Çö
ÀÛ¼ºÀÏ
2020-12-01
Á¶È¸¼ö
128


1. Welling, A., & Palva, E. T. (2006). Molecular control of cold acclimation in trees. Physiologia Plantarum127(2), 167-181.

https://doi.org/10.1111/j.1399-3054.2006.00672.x

2. Richardson, S. J., Bonner, K. I., & Bickford, C. P. (2013). Cold tolerance of photosynthesis as a determinant of tree species regeneration patterns in an evergreen temperate forest. Plant ecology214(5), 787-798.

https://doi.org/10.1007/s11258-013-0208-8

3. Gusta, L. V., Trischuk, R., & Weiser, C. J. (2005). Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation24(4), 308-318.

https://doi.org/10.1007/s00344-005-0079-x
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
20201201_Narayan Bhusal
/ Narayan Bhusal
Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms Volume 172,April 2020, 103975 https://doi.org/10.1016/j.envexpbot.2020.103975
ÀÌÀü±Û
20201201_º¯½Ã¿¬
/ º¯½Ã¿¬
Effects of heat stress on gas exchange and photosystem II (PSII) photochemical activity of Phillyrea angustifolia exposed to elevated CO2 and subsaturating irradiance https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-3040.1992.tb00974.x