¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
20201110_È«Á¤Çö
ÀÛ¼ºÀÏ
2020-11-10
Á¶È¸¼ö
91


1. Chen, L., Liu, C., Zhang, L., Zou, R., & Zhang, Z. (2017). Variation in tree species ability to capture and retain airborne fine particulate matter (PM 2.5). Scientific Reports, 7(1), 1-11.

https://doi.org/10.1038/s41598-017-03360-1

2. Liu, J., Cao, Z., Zou, S., Liu, H., Hai, X., Wang, S., ... & Jia, Z. (2018). An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Science of the total environment, 616, 417-426.

https://doi.org/10.1016/j.scitotenv.2017.10.314

3. Sgrigna, G., Baldacchini, C., Dreveck, S., Cheng, Z., & Calfapietra, C. (2020). Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of The Total Environment, 718, 137310.

https://doi.org/10.1016/j.scitotenv.2020.137310
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
20201110_±è±ÙÈ¿
/ ±è±ÙÈ¿
Moyano, F. E., Kutsch, W. L., & Rebmann, C. (2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands.Agricultural and Forest Meteorology,148(1), 135-143. https://www.sciencedirect.com/science/article/pii/S0168192307002523?casa_token=Xc..
ÀÌÀü±Û
20201110_Narayan Bhusal
/ Narayan Bhusal
Hydraulic dynamics and photosynthetic performance facilitate rapid screening of field grown mulberry (Morus spp.) genotypes for drought tolerance Environmental and Experimental Botany 157 (2019) 320–330 https://doi.org/10.1016/j.envexpbot.2018.10.038