¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â
Á¦¸ñ
Development of land surface albedo algorithm for the gk-2a/ami instrument.
ÀÛ¼ºÀÏ
2022-04-06
Á¶È¸¼ö
105


TitleTitleTitleTitleTitleTitleTitleTitleTitleTitleTitleTitle ³ó¸²»ýÅ°è Áö¼Ó°¡´É¼º Á¦°í¸¦ À§ÇÑ ³ó¸²±â»óÇÐÀÇ µµÀü°ú °úÁ¦Àå±â °üÃø ¿¡µð Ç÷°½º ÀÚ·áÀÇ ¿¬¼Ó¼º È®º¸¿¡ ´ëÇÏ¿© : °³È¸·Î ¹× ºÀÆóȸ·Î ±âüºÐ¼®±âÀÇ ¾ß¿Ü »óÈ£ ºñ±³Anticipating global terrestrial ecosystem state change using fluxnet.The influence of tree structural and species diversity on temperate forest productivity and stability in korea.Impact of leaf area index from various sources on estimating gross primary production in temperate forests using the jules land surface model.Fluxnet-ch4 synthesis activity : Objectives, observations, and future directions.Gap-filling approaches for eddy covariance methane fluxes : A comparison of three machine learning algorithms and traditional method with principal component analysis.Modification of the moving point test method for nighttime eddy co2 flux filtering on hilly and complex terrains.New Gap-filling strategies for long-period flux data gaps using a data-driven approach.Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression : Mechanistic insights from observations and process-based simulations.An Approximate Estimation of snow Weight Using KMA Weather Station Data and Snow Density Formulae.Simulation and Analysis of Solar Radiation Change Resulted from Solar-sharing for Agricultural Solar Photovoltaic SystemConstruction of NCAM-LAMP Precipitaion and Soil Moisture Database to Support Landslide PredictionDatabase Construction of High-resolution Daily Meteorological and Climatological Data Using NCAM-LAMP : Sunshine Hour DataTemperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas : Clear Sky Case Studies in Cheorwon and Jeonbuk.Development of land surface albedo algorithm for the gk-2a/ami instrument.
AuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthorsAuthors ±è±¤¼ö, ¹®°æȯ, õÁ¤È­, ±èÁØȯ, °­¹Î¼®, ±è´ëÁØ°­¹Î¼®, ±èÁØ, ¾çÇö¿µ, ÀÓÁ¾È¯, õÁ¤È­, ¹®¹Î±ÔYu R, Ruddell BL, Kang M, Kim J and Childers DPark J, Kim HS, Jo HK and Jung IBLee H, Park J, Cho S, Lee M, and Kim HSKnox SH, Jackson RB, Poulter B, McNicol G, Fluet-Chouinard E, Zhang Z, Hugelius G, Bousquet P, Canadell JG and Saunois MKim Y, Johnson MS, Knox SH, Black TA, Dalmagro HJ, Kang M, Kim J and Baldocchi DKang M, Kim J, Malla Thakuri B, Chun J and Cho CKang M, Ichii K, Kim J, Indrawati YM, Park J, Moon M, Lim J-H and Chun J-HDechant B, Ryu Y and Kang MJ J, L SJ, C WSI Lee, JY Choi, SJ Sung, SJ Lee, J Lee, W ChoiY So, SJ Lee, SW Choi, SJ LeeS Lee, SJ Lee, K JSS Shin, SJ Lee, N I, K SH, S YY, L S, M BH, K KRLee K-S, Chung S-R, Lee C, Seo M, Choi S, Seong N-H, Jin D, Kang M, Yeom J-M and Roujean J-L
PublicationPublicationPublicationPublicationPublicationPublicationPublicationPublicationPublicationPublicationPublicationPublication 2018201820182018201820182018201920192019201920192019201920192019201920192019201920192019202020202020202020202020
JournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournalJournal Atmosphere 9The Journal of Engineering Geology 28Korean Journal of Agricultural and Forest MeteorologyKorean Journal of Agricultural and Forest MeteorologyKorean Journal of Agricultural and Forest Meteorology Korean Journal of Agricultural and Forest Meteorology Korean Journal of Agricultural and Forest Meteorology Korean Journal of Agricultural and Forest Meteorology 21Korean Journal of Agricultural and Forest MeteorologyGlobal change biology, 25Forests, 10Agricultural and Forest Meteorology 276Bulletin of the American Meteorological Society, 100 Global change biologyMethodsXAtmosphereRemote Sensing of Environment 234Korean Journal of Agricultural and Forest Meteorology The Korean Society of Agricultural Engineers 62Korean Journal of Agricultural and Forest Meteorology 22Korean Journal of Agricultural and Forest Meteorology 22Korean Jorunal of Agricultural and Forest Meteorology 22Remote Sensing 12
ºñ°íºñ°í KCIKCISCIE
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
Inferring co2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model.
/ °ü¸®ÀÚ
TitleTitleTitleTitleTitleTitleTitleTitleTitleTitle ³ó¸²»ýÅ°è Áö¼Ó°¡´É¼º Á¦°í¸¦ À§ÇÑ ³ó¸²±â»óÇÐÀÇ µµÀü°ú °úÁ¦Àå±â °üÃø ¿¡µð Ç÷°½º ÀÚ·áÀÇ ¿¬¼Ó¼º È®º¸¿¡ ´ëÇÏ¿© : °³È¸·Î ¹× ºÀÆóȸ·Î ±âüºÐ¼®±âÀÇ ¾ß¿Ü »óÈ£ ºñ±³Anticipating global terrestrial ecosystem state change using fluxnet.The infl..
ÀÌÀü±Û
An artificial intelligence approach to predict gross primary productivity in the forests of south korea using satellite remote sensing data
/ °ü¸®ÀÚ
TitleTitleTitleTitleTitleTitleTitleTitleTitleTitleTitleTitle ³ó¸²»ýÅ°è Áö¼Ó°¡´É¼º Á¦°í¸¦ À§ÇÑ ³ó¸²±â»óÇÐÀÇ µµÀü°ú °úÁ¦Àå±â °üÃø ¿¡µð Ç÷°½º ÀÚ·áÀÇ ¿¬¼Ó¼º È®º¸¿¡ ´ëÇÏ¿© : °³È¸·Î ¹× ºÀÆóȸ·Î ±âüºÐ¼®±âÀÇ ¾ß¿Ü »óÈ£ ºñ±³Anticipating global terrestrial ecosystem state change using fluxne..