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[1] The spectrum of soil moisture content at scales ranging from 1 hour to 8 years is
analyzed for a site whose hydrologic balance is primarily governed by precipitation (p),
and evapotranspiration (ET). The site is a uniformly planted loblolly pine stand situated
in the southeastern United States and is characterized by a shallow rooting depth (RL)
and a near-impervious clay pan just below RL. In this setup, when ET linearly increases
with increasing root zone soil moisture content (q), an analytical model can be derived
for the soil moisture content energy spectrum (Es( f ), where f is frequency) that predicts the
soil moisture ‘‘memory’’ (taken as the integral timescale) as b1

�1 � hRL/ETmax, where
ETmax is the maximum measured hourly ET and h is the soil porosity. The spectral
model suggests that Es( f ) decays at f

�2�a at high f but almost white (i.e., f 0) at low f,
where a is the power law exponent of the rainfall spectrum at high f (a � 0.75 for
this site). The rapid Es( f ) decay at high f makes the soil moisture variance highly
imbalanced in the Fourier domain, thereby permitting much of the soil moisture
variability to be described by a limited number of Fourier modes. For the 8-year data
collected here, 99.6% of the soil moisture variance could be described by less than
0.4% of its Fourier modes. A practical outcome of this energy imbalance in the
frequency domain is that the diurnal cycle in ET can be ignored if b1

�1 (estimated at
7.6 days from the model) is much larger than 12 hours. The model, however,
underestimates the measured Es( f ) at very low frequencies ( f � b1) and its memory,
estimated from the data at 42 days. This underestimation is due to seasonality in ETmax

and to a partial decoupling between ET and soil moisture at low frequencies.
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1. Introduction

[2] Over the past two decades, the temporal spectrum of
soil moisture (q) has received significant attention in the
climate, hydrologic, and land surface communities because
of its impact on a number of processes including terrestrial
rainfall [Delworth and Manabe, 1988, 1993; Parlange et
al., 1992; Entekhabi et al., 1996; Findell and Eltahir, 1997;
Koster and Suarez, 2001; Wilson et al., 2001; Wu et al.,
2002, Chen and Kumar, 2002; Lauzon et al., 2004; Koster
et al., 2004; Wu and Dickinson, 2004; Amenu et al.,
2005], biogeochemical cycling, and ecosystem resilience
[D’Odorico et al., 2003; Porporato et al., 2004]. Because of
storage effects within the soil pores, the dynamics of q
posses a memory that is often considerably longer than the
integral timescale of many atmospheric processes. Hence
climate anomalies can be ‘‘sustained’’ through land surface
feedbacks primarily because they can ‘‘feed off’’ on this
long-term memory.

[3] The dynamics of q at a given location depends on the
hydrologic balance and on the interplay between variability
in incident precipitation (pi), interception, total evapotrans-
poration (ET), drainage below the root zone, and lateral
flow. More indirectly, soil hydraulic properties, hydraulic
lift from below the main rooting system, surface heating,
and other boundary conditions, such as groundwater table
fluctuations or feedback from soil organic matter dynamics
(e.g., litter fall, microbial biomass, decomposition), can also
shape the spectrum of q. Studying the joint effects of all
these processes on the spectrum of q remains beyond the
scope of a single study. However, a logical starting point is
to restrict the q spectral analysis to two elementary variables
shared by all climatic and hydrologic applications: a pre-
cipitation forcing (e.g., pi) and a water loss (e.g., ET). Even
within this restrictive scope, analytical theories to predict
the spectrum of q at timescales ranging from hour to
interannual have not been fully addressed (mainly due to
the lack of data) and frame the objective of this study.
[4] This objective is addressed via a case study using

long-term spatially averaged q collected in a uniform
shallow-rooted loblolly pine (Pinus taeda L.) plantation
(PP) in the southeastern United States. This ecosystem
lends itself to a number of simplifying hydrologic assump-
tions that permit us to explore analytically how variability in
pi and ET shapes the spectrum of q. A unique data set of
half-hourly pi, ET, and q measured within the rooting zone
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depth (RL) has been collected since 1998. This record permits
both theoretical and experimental analysis of the interplay
between ET and pi and their concomitant impacts on the
spectrum of q at timescales ranging from hours to years.

2. Experiment

[5] PP is a 24-year old loblolly pine plantation situated in
the Blackwood Division of the Duke Forest near Durham,
NC (35� 580 41.43000N, 79� 050 39.08700W, 163 m asl).
Long-term mean annual temperature and precipitation at the
site are 15.5�C and 1100 mm, respectively. The forest stand
lies on Enon silt loam, a low-fertility Hapludalf typical of
the southeastern U.S. Piedmont region. An impervious clay
pan underlies the research site at �30 cm belowground
[Oren et al., 1998]. PP was established in 1983 following a
clear cut and a burn. P. taeda seedlings were planted at 2.4 m
by 2.4 m spacing and ecosystem development has not
been managed after planting. The mean canopy height
increased from 14 m in 1998 to 19 m in 2005. The canopy
is composed primarily of P. taeda with some emergent
Liquidambar styraciflua L. and a diverse and growing
understory with 26 different woody species having diameter
at breast height exceeding 2.5 cm.
[6] ET was measured at 20.2 m using an eddy covariance

(EC) system composed of a triaxial sonic anemometer
(CSAT3, Campbell Scientific, Logan, Utah) and an open
path infrared gas analyzer (IRGA, LI-7500, Li-Cor, Lincoln,
NE). The 10 Hz measurements of vertical velocity and H2O
concentration were collected and vertical turbulent fluxes
were then computed every 30 min. The Webb-Pearman-
Leuning (WPL) correction [Webb et al., 1980] for the
effects of air density fluctuations on flux measurements
was applied to scalar fluxes measured with the open path
LI-7500. A closed path gas analyzer (LI-6262, Li-Cor,
Lincoln, NE) was employed at PP before 1 May 2001,

and 5 Hz measurements were postprocessed as described
elsewhere [Katul et al., 1997]. Ancillary meteorological and
radiation measurements were also collected and described
elsewhere [Stoy et al., 2005]. Topographic variations
around the tower are minor (<5%) and negligibly influence
the eddy covariance ET flux measurements [Kaimal and
Finnigan, 1994].
[7] Daily pi was measured with a rain gauge near the

NOAA meteorological station located at a grass clearing
adjacent to the PP site. Half-hourly pi was measured using a
tipping bucket (TI, Texas Instruments, Austin, TX) and
matched to daily rain gauge data. In the instance of power
failures, missing half hourly pi was gap-filled using daily
precipitation from the NOAA station and hourly data from
the Chapel Hill airport station.
[8] Integrated 0–30 cm q measurements were made at

24 locations within the forest stand using CS615 soil mois-
ture sensors (Campbell Scientific, Logan, UT), and then the
spatially averaged mean of these measurements was taken to
be the site-wide q every 30 minutes. Interception, as a
fraction of incident precipitation, was determined from
separate experiments [Oren et al., 1998] and was estimated
about 30% of above-canopy rainfall for the years 1998–2000
[Schäfer et al., 2002]. Extensive half-hourly throughfall ( p)
measurements were also made during the years 2004–2005
with a network of tipping bucket rain gauges (Campbell
Scientific) at two different locations and, starting from May
2005, at eight different locations. As shown in Figure 1,
using spatially averaged daily rainfall values calculated from
these data a linear relationship (regression slope 0.6, r2 =
0.89) between pi and p was found, with a resulting intercep-
tion of about 40% of above-canopy rainfall. The difference
between the two estimates of interception (i.e., 30 and 40%)
is likely due to the different techniques adopted to measure
throughfall. Figure 1 also shows how, at this stand scale, the
interception is fairly independent of seasonal variations in
leaf area index.
[9] Here we focus on pi(t), ET(t), and q(t) measurements

collected from 1998 to 2005 (n = 140,160 data per variable).
Key hydroclimatic features during the experimental period
included wetter than average growing seasons during 1999,
2000, and 2003, interspersed with an increasingly severe
drought, that extended from the summer 2001 until summer
2002, and mild drought conditions in 1998 and 2005. The
2004 April–September growing season precipitation was
near the long-term (111 year) mean of 632 ± 130 mm [Stoy
et al., 2006]. The measured mean annual pi and EC-based
ET estimates are 1286 mm and 751 mm for the measure-
ment period duration (1998–2005); hence annual ET roughly
accounts for about 97% of annual throughfall (771 mm),
assuming throughfall is about 60% of incident rainfall. Hence
drainage is not a significant contributor to the annual hydro-
logic balance at this site when compared to rainfall or ET.

3. Theory

3.1. Soil Moisture Dynamics in the Time Domain

[10] The vertically integrated continuity equation for soil
moisture across RL for planar-homogeneous conditions
results in

dw tð Þ
dt

¼ p tð Þ � ET tð Þ � Dr tð Þ; ð1Þ

Figure 1. Relationship between daily incident rainfall and
throughfall during the years 2004–2005 (r2 = 0.89). The
circles refer to summertime data, and pluses refer to
wintertime data. Triangles correspond to measurements
starting from May 2005. The seasonal differences in LAI
during the year at PP do not play a key role in determining
interception.
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where t (in h) is time, w(t) is stored water (in mm), p(t) is, as
before, throughfall precipitation (in mm h�1), ET is
evapotranspiration (in mm h�1), and Dr is the drainage
loss (in mm h�1) below RL. Defining a total loss function
L(t) = ET(t) + Dr(t), equation (1) can be written as

ds tð Þ
dt

þ L tð Þ
hRL

¼ p tð Þ
hRL

; ð2Þ

where s(t) = q/h =w/(hRL) is the degree of saturation (2[0, 1])
and h is soil porosity. If L(t) is assumed to vary only with s(t)
[e.g.,Porporato et al., 2004], equation (2) can be expressed as

ds tð Þ
dt

þ b1 sð Þ s ¼ p tð Þ
hRL

; ð3Þ

with b1(s) =
Lmax

hRL

f (s) (in h�1), where Lmax is the

maximum loss rate and f (s) can be interpreted as a
dimensionless ‘‘shape function’’ that retains all the higher-
order nonlinearities in L(t).

3.2. Soil Moisture Dynamics in the Frequency Domain

[11] Analyzing the soil moisture dynamics in the fre-
quency domain has a number of underexploited advantages
over its time domain counterpart. Such advantages are
mostly related to the fact that the soil moisture time series
appears more ‘‘energetically imbalanced’’ in the frequency
domain than in the time domain. In other words, this means
that the variability (also referred to as activity or energy) in
soil moisture content is ‘‘concentrated’’ in few energetic

frequencies (in the Fourier domain) or time instances (in the
time domain). To illustrate this point quantitatively using
the 8-year measured soil moisture record, the so-called
Lorentz curve in both time and frequency domains [Katul
and Vidakovic, 1996, 1998; Katul et al., 1998] is computed
and shown in Figure 2. The Lorentz curve gives a measure
of energy imbalance in a given series by using coefficients
characterizing the series either in time or frequency domain.
In the time domain, these coefficients are simply s0(t)2 for all
time instances (where primed quantities indicate departure
from the time average). In the frequency domain, they are
the amplitudes of the coefficients of the Fourier transform of
s(t). The Lorentz curve can be constructed by starting with a
ranking of the coefficients from the most to the least
energetic and by normalizing them to have energy to be
unity (i.e., 100% of the variance is explained by 100% of
the coefficients). The curve was generated by sequentially
removing the most energetic coefficient and recomputing
the energy until all coefficients were removed (thereby
making the remaining energy = 0). If all the coefficients
in the series contribute equally to the soil moisture variance,
the Lorentz curve is the 1:1 line (see Figure 2). If the series
is ‘‘perfectly unbalanced’’ (i.e., one coefficient contains or
explains all the soil moisture variance), then the Lorentz
curve will be composed of two lines: a vertical line bounded
by the points (1, 0) and (1, 1) and a horizontal line bounded
by (0, 0) and (1, 0).
[12] The Lorentz curves shown in Figure 2 suggest that s in

the time domain is closer to a perfectly balanced signal, while
in the frequency domain resembles a perfectly unbalanced
series. That is, Figure 2 unambiguously shows that the soil
moisture dynamics in the Fourier domain require by far less
coefficients to explain a specified variance level when
compared to their time domain counterpart. As further
evidence, we ‘‘reconstructed’’ the soil moisture time series
using only the most energetic 0.38% Fourier coefficients and
setting the remaining 99.62% to zero. The comparison
between the reconstructed and original soil moisture content
time series is shown in Figure 3. The good agreement
between this reconstructed (nc = 533 Fourier coefficients)
and the originally sampled (n = 140,160 observations) soil
moisture series is rather encouraging (regression slope =
0.97, intercept = 0.024, coefficient of determination r2 =
0.96); the energy loss (defined as the difference in soil
moisture variance between the original and reconstructed
series) is <0.5%.
[13] The results in Figures 2 and 3 are experimental

evidence that variability in root zone soil moisture content
in the frequency domain, at scales ranging from 1 hour to
multiple years, remains highly imbalanced when compared to
its time domain counterpart. Other researchers [e.g.,Wu et al.,
2002; Wu and Dickinson, 2004] found that variability in the
deeper layer soil moisture content (from daily to interannual)
can also be explained by few Fourier modes. As a conse-
quence, it appears logical to consider equation (3) in the
Fourier domain along with its concomitant energy spectrum.
[14] To transform equation (3) from the temporal domain,

t, to the frequency domain, f, recall that the Fourier
transform of an arbitrary function h(t) is given by

H fð Þ ¼
Zþ1

�1

h tð Þ ei f tdt :

Figure 2. Lorentz curves for the measured soil moisture
content time series at PP in the time (solid curve) and
Fourier domain (dashed line). The Lorentz curve for a
perfectly balanced signal is shown as a 1:1 line (dotted).
Note the energy imbalance in the Fourier domain. The point
at which a unit loss in a coefficient results in a unit loss in
energy for the Lorentz curve in the Fourier domain is at
99.6% of the available coefficients.
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By multiplying equation (3) to ei f t and integrating with
respect to time (see Priestley [1981] for applicability of such
definitions to stationary series), we obtain

�i f S fð Þ þ
Zþ1

�1

b1 sð Þ s ei f tdt ¼ P fð Þ; ð4Þ

where S( f ) and P( f ) are the Fourier transforms of s(t) and
p(t)/(hRL), respectively.
[15] Since, as shown in Figure 3, the occurrence of s � 1

is not frequent, surface runoff is neglected. Accordingly,
drainage Dr is small when compared to ET, which is
assumed to decline linearly from a maximum potential rate
ETmax with decreasing s, so that Lmax = ETmax, f (s) = 1, and

b1 =
ETmax

hRL

. With such assumptions, which we refer to as

the ‘‘linear dynamics’’ case in the following, equation (4)
reduces to

�i f S fð Þ þ b1 S fð Þ ¼ P fð Þ; ð5Þ

resulting in

S fð Þ ¼ b1 þ i fð Þ
b 2
1 þ f 2

P fð Þ: ð6aÞ

1 [16] To explore how phase shifts and spectra of soil moisture

relate to rainfall, define r1 ( f ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1 þ f 2

q
andw1( f ) = tan

�1( f/

b1), and represent the quantity b1 + i f = r1( f )e
iw1( f ). Also,

when expressing the throughfall spectrum in polar coordi-
nates (i.e., P( f ) = r2( f )e

iw2( f )), equation (6a) becomes

S fð Þ ¼ r1 fð Þ r2 fð Þ
b 2
1 þ f 2

ei w1 fð Þþw2 fð Þð Þ: ð6bÞ

[17] The term ei(w1( f )+w2( f )) in equation (6b) has impor-
tant implications in how rainfall variability propagates into
the soil moisture system. This term suggests that rainfall and
soil moisture variability experience a phase shift given by
w1( f ) = tan�1( f/b1) = tan�1( f RLh/ETmax). By increasing
the rooting zone depth RL (assuming constant soil porosity
and maximum evapotranspiration), the rainfall and soil
moisture variability become increasingly out of phase.
Furthermore, for long timescales (e.g., decadal), f ! 0
and the soil moisture and rainfall variability become ap-
proximately in phase with each other. Both findings are
qualitatively consistent with the linear phase shift analysis
with depth reported by Amenu et al. [2005] using the Illinois
Climate Network stations.
[18] From equation (6b), the spectrum of s, Es( f ) = jS( f )j2,

can be predicted from the spectrum of p, Ep( f ) = jP( f )j2 =
(r2( f ))

2, using

Es fð Þ ¼ r1 fð Þð Þ2 r2 fð Þð Þ2

b 2
1 þ f 2

� �2 ¼ 1

b 2
1 þ f 2

jP fð Þj2; ð7Þ

Figure 3. (top) Measured (solid line) degree of saturation (n = 140,146) time series s(t) and the
reconstructed series (dashed line) obtained from 0.38% of the Fourier coefficients (n = 533), showing that
the two series are almost indistinguishable. (bottom) The 1:1 comparison between the two series is
presented for clarity.
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where

Z1

0

Es fð Þ df ¼ 1

2
s0

2 ; s0 ¼ s� s, and the overbar is

time averaging.
[19] Note that if the throughfall time series follows a

white noise spectrum, then equation (7) clearly shows how
finite storage within the root zone acts as an integrator of
short-timescale precipitation anomalies (i.e., large f ) trans-
ferring their white noise attributes into red noise soil
moisture (i.e., Es( f ) � f �2). However, more revealing is
when Ep( f ) = jP( f )j2 � f �a, as is often the case for storm
durations on the order of hours or less. In such a case, Es( f )
behaves as f �2�a, decaying much more rapidly than the
precipitation spectrum. The f �2�a decay at high frequency
might be one plausible reason why the energy in the soil
moisture is highly unbalanced in the Fourier domain.
[20] In the following, we compare the measured Es( f )

(shown in Figure 4) with predictions from equation (7) in
the linear dynamics case forced by two different forms of
rainfall spectrum. In particular, we compare results from
the theoretical case of white noise precipitation, in which
Ep( f ) = jP( f )j2 = fp

2, where fp is a constant independent
of f (a = 0), to the results obtained using the spectrum of
precipitation estimated from the data. In the first case,
hereafter we refer to as model 1, the spectrum of soil
moisture is a constant independent of f when f � b1 and

decays as f �2 when f � b1. In the second case (hereafter
referred to as model 2), Ep( f ) = jP( f )j2 is estimated using a
discrete Fourier transform of the rain gauge time series
collected above the canopy multiplied by 0.6 to account for
interception losses.
[21] By comparing these two models with measured Es( f ),

we can assess how variability in precipitation and non-
linearities in the loss function (i.e., f (s) 6¼ 1) or other low-
frequency modulations contribute to the spectrum of soil
moisture. In particular, comparing Es( f ) predicted from
models 1 and 2 permits us to quantify how the spectrum
of p(t) impacts Es( f ) when the loss function maintains its
linearity, and comparing model 2 with the measured soil
moisture spectrum permits us to assess how nonlinearities in
the loss function and other low-frequency sources of vari-
ability (e.g., related to pulsed drainage or to seasonality in
ET) impact Es( f ).

4. Results and Discussion

[22] Throughout, we refer to the ‘‘measured’’ spectrum of
any arbitrary discrete variable X as that spectrum calculated
from the raw time series using the Welch’s averaged
modified periodogram method. In this method, X is divided
into overlapping sections, then windowed (Hanning win-

Figure 4. (top) Measured spectra of the eddy covariance ET, (middle) throughfall estimated as a
constant fraction of incident precipitation, and (bottom) soil moisture (s) as a function of frequency ( f ).
All spectra are normalized by the variance (s2) of their respective time series. The solid vertical lines
(right to left) in Figure 4 (top) indicate frequencies corresponding to the following timescales: diurnal
(12 hours), daily (24 hours), and annual (8760 hours), respectively. The dashed lines in Figures 4
(middle) and 4 (bottom) indicate the measured exponent a for rainfall (= �0.75) and the predicted
exponent (= �2.75) for the soil moisture series at high frequencies.
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dows are used), and then zero-padded (when necessary) to
permit FFT calculations.

4.1. Spectra of the Hydrologic Variables

[23] Figure 4 shows the normalized spectra of all the key
variables for the simplified hydrologic budget, identifying
the key timescales and showing the spectral predictions
for the exponents at high frequencies. From Figure 4,
Ep( f ) appears almost ‘‘white’’ at monthly to seasonal
timescales, but appears colored at higher frequencies with
an exponent approximately equal to �0.75. The measured
Es( f ) � f �2� 0.75 seems to confirm power law predic-
tions of model 2 at higher frequencies. The spectrum of
ET exhibits the expected peaks at diurnal (�12 hours)
and daily (�24 hours) frequencies, but significant sea-
sonal and interannual variations are also evident.

4.2. Comparisons Between Measured and Modeled Soil
Moisture Spectra

[24] Figure 5 compares the spectrum of measured
Es( f ) with predictions by the two models, assuming

b1 =
1

hRL

ETmax, with ETmax = 0.9 mm h�1 directly taken

from the EC data (1998–2005), h = 0.55 and RL = 300 mm
taken from Oren et al. [1998]. For model 1, we assumed that
Ep( f ) = jP( f )j2 = f2, where the constant is determined from
the measured precipitation variance distributed uniformly
at all frequencies (i.e., white noise precipitation spectrum).
For model 2, the 30-min measured Ep( f ) = jP( f )j2 was used
in equation (7). From the comparisons in Figure 5, we note
the following:

[25] 1. Model 1 explains several ‘‘geometric’’ attributes
of the measured soil moisture spectrum: a near constant
value at low frequencies and a rapid decay at high
frequencies. However, it is clear that the decay in the
measured Es( f ) is steeper than f

�2 and that model 1 severely
underestimates the energy content at frequencies smaller than
seasonal (i.e., f < 0.00035 h�1).
[26] 2. Model 2 explains all the key geometric attributes

of the measured soil moisture spectrum from hours to
seasonal reasonably well (see Figure 6 for a 1:1 comparison
and statistical analysis; note that the regression slope = 0.93,
r2 = 0.74 in a log scale), though it also underestimates the
soil moisture variability at frequencies smaller than season-
al. As discussed in Figure 4, the ‘‘steepening’’ of the
measured Es( f ) beyond f

�2 (i.e., f �2.75) is well reproduced
and is primarily due to the fact that Ep( f ) exhibits approxi-
mate power law decay of about f �0.75 at high frequencies.
[27] For model 1, the correlation time can be estimated

analytically as 1/b1, corresponding to a frequency of f =
0.0055 h�1 (or 7.6 days). This prediction overestimates the
frequency (or underestimates the memory) determined from
the soil moisture integral timescale, which corresponds to
f � 0.001 h�1 (or about 42 days) shown in Figure 7. The
measured memory or integral timescale was estimated from
the area under the measured autocorrelation function of the
soil moisture content time series (see Appendix A for
derivation). Recall that for model 1, the soil moisture
memory is related to the spectral peak in Figure 7
when plotting f Es( f ) versus f (see Appendix A for relation-
ships between b1, integral timescale, and the frequency at
which f Es( f ) peaks). Notwithstanding this underestimation

Figure 5. Comparison between measured (pluses) and modeled (lines) soil moisture spectra Es( f ).
Model 1 is the linear dynamics model forced with white noise precipitation. Model 2 is the linear
dynamics model forced with the measured p spectrum shown in Figure 4. The vertical dotted lines are
frequencies corresponding to the following timescales (right to left): b1

�1 (= 7.6 days) and the measured
integral timescale (= 42 days). The dashed vertical lines (right to left) indicate frequencies corresponding
to the following timescales: diurnal (= 12 hours), daily (= 24 hours), and annual (= 8760 hours),
respectively.
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of the memory timescale, we find that because 1/b1
(�180 hours) occurs at frequencies much smaller than
diurnal (�12 hours), variability or energy in diurnal ET
(evident in Figure 4) does not significantly impact Es( f ).
Hence, according to the analysis in Figure 7, it is safe to say
that for modeling the spectrum of soil moisture, diurnal

dynamics in ET may be ignored if b1
�1 � 12 hours, as is the

case here. To further support this argument, we note that, in
a separate study, it was shown that at the daily timescale the
impact of rainfall variability on soil moisture dynamics is
much stronger than fluctuations in evapotranspiration [Daly
and Porporato, 2006].

Figure 6. Comparison between measured and model 2 predictions of the soil moisture spectrum Es( f ).
The regression slope, intercept, and coefficient of determination r2 are 0.93, �1.38, and 0.74,
respectively. The 1:1 line is also shown for reference. Note the underestimation of the energetic
components corresponding to the low frequencies.

Figure 7. Comparison between measured and modeled f Es( f ). Model 1 is the thick solid line, model 2
is in solid dots, and the measurements are pluses. The vertical lines are frequencies corresponding to the
following timescales (right to left): b1

�1 (= 7.6 days) determined from the peak of f Es( f ) shown here and
the measured integral timescale (= 42 days).
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[28] Both Figures 6 and 7 suggest that model 2 is missing
some low-frequency energy not explained by precipitation,
likely to be introduced by low-frequency variability in ET
[Stoy et al., 2006]. It is clear from Figure 4 that while the
spectrum of precipitation appears almost white at frequen-
cies lower than seasonal, the spectrum of soil moisture
shares some attributes with the spectrum of ET for seasonal
and longer timescales. A logical starting point to explore
this hypothesis analytically is to assume that ET is not
restricted by soil moisture content (which is unrealistic for
all ranges of soil moisture) and is approximated by its
equilibrium evaporation value (ETequ), given by

ETequ tð Þ � c
D

Dþ g
Rn tð Þ ð8Þ

whereD and g are the slope of the saturation vapor pressure�
temperature curve and the psychometric constant, respectively,
Rn is the net radiation measured above the canopy and c is
necessary to convert W m�2 to mm h�1 (300 W m�2 are
approximately 0.4 mm h�1). As before, the Fourier coeffi-
cients of the soil moisture content at frequency f can be related
to the Fourier coefficients of the precipitation and equilibrium
evaporation via

S fð Þ ¼ �P fð Þ � ETequ fð Þ
i f

: ð9Þ

[29] The resulting soil moisture spectrum is given by

Es fð Þ ¼ 1

f 2

����P fð Þ � ETequ fð Þ
����
2

ð10Þ

Figure 8. (top) Variations of normalized equilibrium evapotranspiration (ETn) with time (normalized
by its maximum value). (bottom) Comparison between measured (symbols) and modeled (lines) f Es( f ).
Model 2 is the solid thick line, and model 3 is the dashed line. Note the large energy content at low
frequencies for model 3.
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and is hereafter referred to as model 3. Notice that models 2
(linear dynamics) and 3 bound all plausible relationships
between ET and s. As expected, the spectrum of model 3 is
energetically unbounded (variance increases indefinitely) as
the sampling time increases indefinitely ( f ! 0), which is
unrealistic and physically not plausible. Within the 8-year
sampling period studied here, we expect that this spectrum
overestimate the measured spectrum at low f. In fact,
although for this spectrum the memory in soil moisture is not
defined, yet the seasonal all the way up to interannual cycles
in ETequ retain their fingerprints in the soil moisture (see
Figure 8). What Figure 8 demonstrates then is that the
measured soil moisture content spectrum is bounded between
models 2 and 3 and that the missing ‘‘energy’’ at low
frequencies (say f � b1) in model 2 appears to be attributed
to a partial ‘‘decoupling’’ between ET and s at seasonal
timescales with ET now being driven primarily by available
energy (or equilibrium evaporation conditions). Note that if
we linearly combine the spectra (i.e., additive variance) in
equations (7) and (10), we obtain

Es fð Þ ¼ a1
jP fð Þj2

b2
1 þ f 2

þ 1� a1ð Þ jP fð Þ � ETequ fð Þj2

f 2
ð11Þ

where a1 2 [0, 1] now measures the degree of nonlinearity in
the ET � s relationship of Figure 9. Even if a1 is close to
unity (but not exactly unity), as f ! 0, the spectrum in
equation (11) will be dominated by the second term, and

Es fð Þ ! 1� a1ð Þ jP fð Þ � ETequj2

f 2
:

further confirming this hypothesis for energy-limited ecosys-
tems.

5. Summary and Conclusions

[30] We proposed a simplified analytical model for the
spectrum of soil moisture content at scales ranging from
hour to interannual timescales for a site whose hydrologic
balance is primarily governed by stored water, rainfall, and

ET. We showed that for this simplified hydrologic balance,
when ET is linearly related to soil moisture content
and when the precipitation spectrum is approximately white
noise, the resulting spectrum becomes red (decaying at f �2 )
at high frequencies and white at low frequencies.
The soil moisture memory can be predicted analytically

as
1

b1

¼ hRL

ETmax

. We also showed that the origin of the

measured spectral decay in the soil moisture spectrum
that is ‘‘steeper’’ than f �2 (about f �2.75) could be
explained by the decay in the measured precipitation
spectrum (roughly as f �0.75) for higher frequencies (i.e.,
f � b1). This rapid spectral decay at high frequencies
makes the soil moisture variance highly imbalanced in the
frequency domain. To quantitatively illustrate this point
using only the soil moisture time series measurement, we
showed that 99.4% of the soil moisture variance could be
described by using less than 0.4% Fourier modes. A practical
outcome of this energy imbalance in the frequency domain is
that the diurnal cycle in ET can be ignored if b1

�1� 12 hours
(at least for the analysis of q variability). Both models,
however, underestimated the measured soil moisture content
energy spectrum at low frequencies (f� b1). We argued that
this underestimation could be traced back to a decoupling
between ET and soil moisture at the seasonal timescale,
presumably because of the strong coupling between ET and
available energy. Considering only the primary external
drivers of ET, Rn and vapor pressure deficit (D), 69% of
the half hour variability in ET is explainable by Rn and 43%
by D despite the low values of the decoupling coefficient (W,
[Jarvis and McNaughton, 1986]) for this stand [Stoy et al.,
2006]. This result (that ET is primarily energy limited) also
agrees with combined results from other pine plantations in
the southeastern United States [Gholz and Clark, 2002] that
showed strong relationships between annual and seasonal
ET and Rn and suggest that improved understanding of q
dynamics in the frequency domain in ‘‘energy-limited’’
ecosystems may be obtained by focusing on this long-term
forcing.

Appendix A: Inferring b1 From the Spectrum
of a Finite Time Series

[31] The memory of a zero-mean and unit variance
stochastic process is often determined from the correlation
time (or 1/e point, here b1

�1) or the integral timescale (G).
These quantities can be determined from the spectral density
function E( f ) by noting that G, the autocorrelation function
r(t), and E( f ) are all related by

G ¼
Z1

0

r tð Þdt;

r tð Þ ¼
Zþ1

�1

eit f E fð Þ df ; and

E fð Þ ¼ 1

2p

Zþ1

�1

e�if tr tð Þdt:

Figure 9. Variations of ET/ETmax with s assuming linear
(models 1 and 2) and constant or uniform dependence
(model 3). Note that the combined linear and uniform
models encompass all plausible nonlinear relationships
between ET/ETmax with s.
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Hence G can be directly inferred from E(f) when f = 0
because

E 0ð Þ ¼ 1

2p

Zþ1

�1

e0 r tð Þ dt ¼ 1

p

Zþ1

0

r tð Þ dt ¼ G
p
:

For a time series sampled over a finite time interval, E(0) is
difficult to determine without (heuristic) extrapolations.
[32] In our case, the spectrum of the model (i.e., model 1)

follows the canonical form

E fð Þ ¼ s2

b 2
1 þ f 2

;

where s2 =
b1

p
to ensure a unit variance for all f 2 [0, 1].

With this estimate of s2,

G ¼ 1

b1

:

[33] Furthermore, b1 can be determined as the frequency
at which U( f ) = f E( f ) is maximized. This b1 estimate,
derived from the maximum of U( f ), can be demonstrated
by noting that

dU fð Þ
df

¼ � 2s2f 2

b 2
1 þ f 2

� �2 þ s2

b 2
1 þ f 2

= 0 (i.e., maximum)

only when f = ±b1 (and we only accept positive frequencies).
[34] In short, by plotting f (as abscissa) versus f E(f) (as

ordinate) and determining the frequency at which the
ordinate peaks provides a clear estimate of b1 (and G)
without requiring an extrapolation for E(0).
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