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ABSTRACT

The effect of power levels on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria
monocytogenes in tomato paste was investigated using 915-MHz microwave heating (MW) and ohmic heating (OH). Heating
uniformity, pathogen inactivation, and quality aspects were determined with 1.8-, 2.1-, 2.4-, and 3.0-kW MW and corresponding
OH. GInaFit was used to analyze pathogen inactivation. The heating uniformity of MW-treated samples was inferior to that of
OH-treated samples at low power levels of 1.8 to 2.4 kW but improved as the power level increased. Pathogen inactivation of
MW-treated samples was significantly higher than that of OH-treated samples at low power levels of 1.8 to 2.4 kW (P < 0.05)
but was not significantly different at the highest power level of 3.0 kW (P > 0.05). Quality aspects (color, pH, and lycopene
content), except for L*, of MW-treated samples were not significantly degraded (P > 0.05) by increased power levels. Our results
indicate that increasing power levels of MW ensures heating uniformity and microbiological safety and preserves quality aspects

of tomato paste.
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Foodborne illness is a major public health problem, and
socioeconomic losses resulting from foodborne outbreaks
have been reported worldwide. In particular, foodborne
outbreaks associated with raw tomatoes resulted in 1,959
illnesses, 384 hospitalizations, and three deaths from 1990
through 2010 (3). Tomatoes are enjoyed worldwide in the
form of processed products such as juice, ketchup, paste,
puree, sauce, passata, and tomato chips (/6). Among these
products, tomato paste is a significant component of the
human diet and an important source of antioxidants (4).
Tomato paste contains 24% or more natural tomato soluble
solids and is made from concentrated tomato pulp after the
removal of skins and seeds (/3). Even though tomato paste
has been considered a safe food because of its low pH (3.5 to
4.7), some acid-resistant bacteria and bacterial spores can
survive in an acidic environment (19, 22, 30). Because
Escherichia coli O157:H7, Salmonella Typhimurium, and
Listeria monocytogenes are known to be acid resistant (217,
24, 29), these pathogens must be inactivated completely
during processing.

* Author for correspondence. Tel: 82-2-880-4927; Fax: 82-2-883-
4928; E-mail: kang7820(@snu.ac.kr.
T These authors contributed equally to this work.

Thermal treatment is an important step in tomato paste
processing that inactivates foodborne pathogens and en-
hances the nutritional value (9). Nevertheless, high temper-
atures and long treatment times characteristic of
conventional thermal processing can seriously degrade
quality aspects of the product (/4). Thus, advanced thermal
technologies such as microwave heating (MW) and ohmic
heating (OH) have been proposed as alternative thermal
technologies for reducing tomato paste processing time (4,
11, 17, 31). Power level is an important factor in both MW
and OH during food processing. The power level of OH is
determined by electric field strength and can be changed by
changing the voltage or electrode gap (/0, 32). In contrast,
the power level of MW is designated in units of electric
power (35). Processing time would be too long at very low
power levels, whereas quality degradation could occur at
very high power levels. Therefore, selection of an adequate
power level is necessary to ensure microbiological safety
while minimizing quality degradation of foods. For these
reasons, optimization studies of power levels in food
processing have been conducted in recent years (2, 8, 33,
34).

Thermal inactivation of foodborne pathogens generally
follows a non-log-linear trend. GlnaFit is a freeware tool
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used to assess non—log-linear microbial survivor curves,
helping researchers develop predictive modelling approach-
es for the food industry (/2). Among several models in
GlnaFit, the Weibull and shoulder log-linear models are the
most frequently used to analyze the inactivation of
microorganisms because these models provide optimal
fitting. Inactivation curves of an indicator microorganism
(nonpathogenic E. coli) and pathogenic microorganisms (E.
coli O157:H7, Salmonella Typhimurium, and L. monocyto-
genes) were suitably analyzed by Weibull and shoulder log-
linear models in previous studies (5, 27, 28). Even though
tomato paste has been of interest as a model food for
evaluating OH and MW processing recently, research about
the effect of power levels in tomato paste processing has
been limited.

In the present study, we investigated the effect of power
levels on tomato paste processing using MW and OH.
Heating uniformity in microwave- and ohmic-heated tomato
paste was compared at different power levels, and pathogen
inactivation was analyzed by GInaFit using Weibull and
shoulder log-linear models. Quality aspects of MW-treated
tomato paste also were assessed at different power levels.

MATERIALS AND METHODS

Bacterial cultures and cell suspension. Three strains each of
E. coli O157:H7 (ATCC 35150, ATCC 43889, and ATCC 43890),
Salmonella Typhimurium (ATCC 19585, ATCC 43971, and DT
104), and L. monocytogenes (ATCC 19111, ATCC 19115, and
ATCC 15313) were obtained from the bacteria culture collection of
Seoul National University (Seoul, South Korea). Stock cultures
and working cultures were prepared by the method described
elsewhere (6, 1/8). The final pellets were resuspended in 9 ml of
sterile 0.2% peptone water, corresponding to approximately 10® to
10° CFU/ml. Suspended pellets of the three pathogens were
combined to create a mixed culture cocktail containing approxi-
mately equal numbers of cells of each strain of E. coli O157:H7
(10" CFU/ml), Salmonella Typhimurium (10’ CFU/ml), and L.
monocytogenes (10° CFU/ml).

Sample preparation and inoculation. Canned tomato paste
made from organic tomatoes was purchased at a local grocery store
(Seoul, South Korea) and stored at room temperature out of direct
sunlight. Twenty-five grams of tomato paste was inoculated with
0.2 ml of the culture cocktail and thoroughly stirred with a spatula
for 1 min. The final cell levels were 10° to 10’ CFU/g for E. coli
0157:H7 and Salmonella Typhimurium and 10> to 10° CFU/g for
L. monocytogenes.

MW treatment. MW treatments were performed in a
previously described apparatus (34). The microwave system
consisted of a high frequency power generator, magnetron head,
waveguide system (WR-975), microwave cavity (Korea Micro-
wave Instrument Co., Gyeonggi-do, South Korea), fiber optic
temperature sensors, and signal conditioner (FOT-L, TMI-4, FISO
Technologies Inc., Quebec City, Quebec, Canada). The initial
preheating time was 30 min for this system. For treatment, 25 g of
tomato paste was dispensed into a microwavable cylindrical
polypropylene container, which was placed at the center of the turn
table inside the cavity and subjected to MW at four power levels
(1.8, 2.1, 2.4, and 3.0 kW). Tomato paste inoculated with
pathogens was treated with MW for a maximum of 110, 85, 70,
and 55 s at 1.8, 2.1, 2.4, and 3.0 kW, respectively. Fiber optic
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temperature sensors were inserted at the center and side of the
chamber through a hole at the top wall of the cavity, and a signal
conditioner connected to a personal computer recorded real-time
sample temperatures at 1-s intervals. The side temperature was
obtained with a fiber optic sensor close to the wall of the container
in contact with the sample. The turn table was not operated while
the temperature was measured, and a stirrer was used instead of the
turn table to ensure uniformity of microwave penetration.

OH treatment. OH treatments were carried out in a
previously described apparatus (26). The system consisted of a
function generator (no. 33210A, Agilent Technologies, Palo Alto,
CA), a precision power amplifier (no. 4510, NF Corp., Yokohama,
Japan), a two-channel digital-storage oscilloscope (no. TDS2001C,
Tektronix, Inc., Beaverton, CO), a data logger (no. 34970A,
Agilent Technologies), and an OH chamber. The OH electric field
was regulated at 8.3 to 27.8 V,/cm to match the central
temperature of the OH-treated tomato paste with that of the MW-
treated tomato paste. K-type thermocouples were inserted at the
center and side of the OH chamber, and temperatures were
recorded at 0.6-s intervals with a data logger. All other conditions
were the same as those described for MW.

Bacteriological analysis. For microbial enumeration, each
treated 25-g sample was immediately transferred into a sterile
stomacher bag (Labplas, Inc., Sainte-Julie, Quebec, Canada)
containing 225 ml of sterile 0.2% peptone water and homogenized
for 2 min with a stomacher (Easy Mix, AES Chemunex, Rennes,
France). After homogenization, 1-ml samples were 10-fold serially
diluted with 9 ml of sterile 0.2% peptone water, and 0.1 ml of
stomached samples or diluents was spread plated onto each
selective medium: sorbitol MacConkey agar (Difco, BD, Sparks,
MD) for E. coli O157:H7, xylose lysine desoxycholate agar (Difco,
BD) for Salmonella Typhimurium, and Oxford agar base with
antimicrobial supplement (MB Cell, Los Angeles, CA) for L.
monocytogenes. All plates were incubated at 37°C for 24 to 48 h,
and colonies characteristic of the pathogens were counted.

Inactivation parameters. Survival curves were analyzed by
the Weibull and shoulder log-linear models. The parameters of the
Weibull model (6 and p) are calculated from the following
equation:

tog(V) = log(No) — (5" M

where N (CFU/ml) is the population of the microorganisms, Ny is
the initial population, # (minutes) is the treatment time, 6 (minutes)
is the time for the first decimal reduction, and p is the parameter
related to the scale and shape of the survival curve. The Weibull
distribution corresponds to a concave downward survival curve
when p > 1 and a concave upward curve when p < 1 (36). The
time required to achieve a 3-log reduction (#3,) and a 5-log
reduction (#s,) was calculated using equation 2:

ted = 5X (x)7 (2)

The parameters of the shoulder log-linear model are

log(V) — log(Ng) — ‘mx(D) | 1, e (3)
B = 1080 T n(10) OB\ T 1 (st — D)oot
where S| is the shoulder length and 4,y is the inactivation rate (per
minute). The time required to achieve a 3-log reduction and a 5-log
reduction was calculated using equation 4:
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FIGURE 1. Time-temperature profiles of tomato paste at power levels of (a) 1.8, (b) 2.1, (c) 2.4, and (d) 3.0 kW. Center temperatures of
ohmic-heated (@) and microwave-heated (O ) samples and side temperatures of ohmic-heated (V) and microwave-heated (/) samples are
shown. The results are means from three experiments; error bars indicate standard errors.

td = 8+ (x) 4)

Measurement of color, pH, and lycopene concentration.
Color, pH, and lycopene concentration of treated and untreated
(control) samples were measured. All treated samples were cooled in
crushed ice immediately after treatment. Color values were
measured with a Minolta colorimeter (CR400, Minolta Co., Osaka,
Japan). The values for L*, a*, and b* were measured to evaluate the
color changes of tomato paste after each heating treatment, where L*
is a measure of lightness, a* is a measure of redness, and b* is a
measure of yellowness. The pH of treated and untreated samples was
measured with a pH meter (Seven Multi 8603, Mettler Toledo,
Greifensee, Switzerland). Lycopene concentration in tomato paste
was measured according to a method described previously (23). The
absorbance of the upper hexane layer was measured with a
spectrofluorophotometer (Spectramax M?2e, Molecular Devices,
Sunnyvale, CA) at 503 nm. The concentrations of lycopene in
tomato paste (milligrams per kilograms of tissue) were determined
using absorbance and sample weight with equation 5:

lycopene = Aspz X 0.0312 kg/sample (5)

Statistical analysis. All experiments were replicated three
times. All data were analyzed by the analysis of variance procedure

of the Statistical Analysis System (version 9.3, SAS Institute, Cary,
NC), and mean values were separated using Duncan’s multiple
range test. Significant differences in the processing treatments were
determined at a significance level of P = 0.05.

The fitness of the models was evaluated by the root mean
squared error (RMSE) and the regression coefficient R>:

i (yexpi - ypre)z
n—np

i=1

RMSE =

where yeypi is the experimental observation, yp. is the model
prediction, 7, is the number of data points, and 7, is the number of
parameters.

RESULTS AND DISCUSSION

Heating uniformity is an important factor for ensuring
microbiological safety in food processing. In the present
study, tomato paste exposed to MW was less uniformly
heated than were OH samples (Fig. 1). The temperature
differences between center and side were larger for MW
than for OH samples. The side temperatures of MW samples
were 37 to 43°C when the center temperature reached 80°C.
In contrast, the side temperatures of OH samples were 67 to
77°C when the center temperature reached 80°C. Temper-
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TABLE 5. Color, pH, and lycopene concentration of microwave-treated tomato paste at different power levels®

EFFECT OF MICROWAVE AND OHMIC HEATING ON PATHOGENS 1621

Color
Power level (kW) L* a* b* pH Lycopene (mg/kg)
0 31.73 £ 0.07 A 26.81 = 041 A 26.71 = 1.26 A 3.87 £0.17 A 64.41 = 5.54 A
1.8 31.29 = 0.09 B 2697 = 0.31 A 26.57 = 0.28 A 3.86 = 0.15 A 56.66 = 5.11 A
2.1 31.06 = 0.11 B 26.65 = 0.53 A 26.99 = 0.22 A 3.86 £ 0.15 A 61.05 = 397 A
2.4 31.07 £ 0.20 B 2632 = 0.27 A 26.77 = 0.07 A 3.92 £ 0.16 A 63.41 = 7.30 A
3.0 31.25 = 0318 26.64 = 0.59 A 26.96 = 0.36 A 3.84 £ 0.17 A 58.92 = 6.21 A

“ Values are means * standard deviations. Within a column, means followed by different letters are significantly different (P < 0.05).

atures at the geometric center of MW samples were higher
than those at the side, a phenomenon reported by other
researchers who suggested that the center concentration
effect of 915-MHz MW is a reason for nonuniformity (7,
25). The center concentration effect could also have resulted
in the nonuniformity of heating in our MW samples. The
problems of nonuniformity have been pointed out by
numerous researchers, but solutions have been confined to
specific conditions (35). Our results indicate that increasing
the power levels could be one way to mitigate the
nonuniformity of MW.

Differences in heating uniformity between OH and MW
led to differences in inactivation parameters of the
foodborne pathogens (Tables 1 through 4). At first, high
R? (>0.94) and low RMSE (<0.50) were observed in both
the Weibull and shoulder log-linear models, which indicated
that these two models fit well for inactivation of E. coli
O157:H7, Salmonella Typhimurium, and L. monocytogenes.
The ky.x parameter, which indicates the inactivation rate,
increased as the power level increased regardless of heating
method (Tables 1 through 4). We assumed that more time
would be needed for MW samples because the side
temperature lagged behind the center temperature. The
parameters & and S;, which represent time needed in the
early stage of inactivation, were larger in MW than OH
samples as we predicted (Tables 1 through 3). The same
tendency was observed for t3,; and fs,;, which indicate the
time needed for 3-log and 5-log reductions, respectively, of
the pathogens. Significant differences (P < 0.05) between
OH and MW samples were found for the f3; and #5, values,
which indicates that MW is less effective for inactivation of
pathogens than OH at low power levels (1.8 to 2.4 kW).
However, significant differences between OH and MW
samples were not found for 0, S, 134, and s, at the highest
power level (3.0 kW) (Table 4). The differences in the
inactivation parameters between MW and OH decreased as
the power level increased because the temperature difference
between center and side of MW samples decreased as the
power level increased. Thus, heating uniformity achieved by
increasing power levels would result in more thorough
inactivation of pathogens in MW samples.

Color, pH, and lycopene concentration are major quality
aspects of tomato paste. In the present study, L* values of all
MW samples decreased significantly (P < 0.05) compared
with untreated samples and were not significantly different
(P > 0.05) among MW samples (Table 5). Other quality
aspects (a*, b*, pH, and lycopene concentration) were not
significantly different between MW and untreated samples

(P > 0.05). The same tendency was observed for OH
samples (data not shown). L* values of OH samples (30.38
to 31.02) decreased significantly (P < 0.05) compared with
untreated samples (31.91). Similar to MW samples, other
quality aspects of OH samples were not significantly
different from those of untreated samples (P > 0.05). Even
though significant quality differences were not observed
relative to power levels used in the present study (P > 0.05),
the lycopene concentration was lowest following treatment
at the lowest power level. The effect of power level on the
quality of tomato products has also been reported previous-
ly. Several researchers have reported that the quality of
tomato products was degraded by MW at high power levels
(I, 15, 20). However, long processing times at low power
levels also can result in quality deterioration (34). Therefore,
selection of the appropriate power level is crucial for
minimizing quality degradation of food products. Increasing
power levels should effectively minimize quality degrada-
tion in the range of power levels used in the present study.

In conclusion, increasing the power levels of MW
ensured heating uniformity and microbiological safety and
preserved quality aspects of tomato paste. Therefore,
increasing power levels would be effective for processing
tomato paste with MW in the range of power levels used in
the present study. Further study should be conducted to
identify the overall temperature distribution of MW samples.
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