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a b s t r a c t

Naringin is the natural chief bitter flavonoid found in Citrus species. Herein, bitter naringin was treated
with atmospheric pressure plasma to afford two new converted flavonoids, narinplasmins A (2) and B
(3), along with the known compound, 2R-naringin. The structures of the two new naringin derivatives
were elucidated on the basis of spectroscopic methods. The antioxidant activity of all isolates was
evaluated based on 1,1-diphenyl-2-picrylhydrazyl and peroxynitrite (ONOO�) scavenging assays. The
new flavanone glycoside 2 containing a methoxyalkyl group exhibited significantly improved antioxidant
properties in these assays relative to the parent naringin.

� 2015 Elsevier Ltd. All rights reserved.
High levels of reactive oxygen species (ROS) and free radicals
continuously produced by human cells play an important role in
the initiation of major diseases such as drug-associated toxicity,
inflammation, carcinogenesis, atherogenesis, and aging.1 Dietary
antioxidants might confer health-promoting and disease-prevent-
ing benefits by alleviating oxidative stress by stymieing the gener-
ation of free radicals.2 Several recent reports have shown that
synthetic antioxidants such as BHT and BHA may be implicated
in cancer in humans, and these reports recommended restriction
of their use.3

Among the naturally occurring antioxidants, polyphenols are
widely distributed in various fruits, vegetables, wines, juices, and
plant-based dietary sources. Polyphenols are divided into several
subclasses, including phenolic acids, flavonoids, stilbenes, and
lignans.4

Flavonoids represent one of the largest groups of plant second-
ary metabolites with 6467 reported compounds.5 This huge class of
plant metabolites has been shown to possess a wide spectrum of
significant biological benefits such as antioxidant, anticancer,
anti-inflammatory, antiviral, and chemopreventive properties.5

Flavonoids are grouped into several subclasses such as flavans,
flavones, flavanones, flavonols, isoflavonoids, and anthocyanins,
all of which are characterized by a 2-phenylbenzopyran-4-one
structure. Flavanone glycosides such as bitter naringin and neohes-
peridin, used as chemotaxonomic markers in Citrus species, play a
major role in the expression of pharmacological and nutritional
effects.6 In addition, recent studies on the biotransformation and
bioavailability of naringin in plant cell cultures and metabolic
pharmacokinetics have been reported.7

Dielectric barrier discharge (DBD) plasma treatment has been
demonstrated to be an advanced non-thermal technology for food
processing that is also known to have various physiological
functions, including bactericidal, fungicidal, and virucidal effects.8

Previous studies have verified that the DBD plasma treatment is
a valuable method for improving the biological activity of natural
compounds.9 However, systematic research related to the bio-
transformation of naturally occurring secondary metabolites using
DBD plasma is still very limited. As part of an ongoing investigation
into generating bioactive compounds using heat, c-irradiation, and
polyphenol oxidase,10–12 we herein report the biotransformation of
naringin using DBD plasma13 with the consequent formation of
two new flavanone derivatives 2 and 3, along with related
compounds. The new compound (2) shows significantly enhanced
antioxidant effects relative to the parent naringin based on two
antioxidant bioassays.
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Table 1
1H and 13C NMR data of compounds 2 and 3a

Position 2 3

dH (J in Hz)b dC, mult. dH (J in Hz)b dC, mult.

1 — — — —
2 5.38 (dd, 13.2, 3.4) 80.7 5.38 (dd, 13.2, 3.4) 80.8
3a 3.17 (dd, 17.0, 13.2) 43.0 3.17 (dd, 17.0, 13.2) 43.0
3b 2.75 (dd, 17.0, 3.4) 2.75 (dd, 17.0, 3.4)
4 — 198.7 — 198.6
5 — 164.7 — 164.7
6 6.15 (d, 1.8) 97.8 6.16 (d, 1.8) 97.8
7 — 166.5 — 166.7
8 6.17 (d, 1.8) 96.7 6.18 (d, 1.8) 96.8
9 — 165.0 — 165.0
10 — 104.9 — 104.9
10 — 130.8 — 130.8
20 7.32 (d, 8.4) 129.2 7.31 (d, 8.4) 129.1
30 6.81 (d, 8.4) 116.3 6.81 (d, 8.4) 116.3
40 — 159.2 — 159.1
50 6.81 (d, 8.4) 116.3 6.81 (d, 8.4) 116.3
60 7.32 (d, 8.4) 129.2 7.31 (d, 8.4) 129.2
100 5.13 (d, 7.8) 99.2 5.07 (d, 7.8) 99.7
200 3.65 (m) 79.1 3.58 (t, 9.0) 80.8
300 3.50 (dd, 8.4, 2.4) 78.2 3.63 (m) 78.2
400 3.71 (m) 78.4 3.38 (m) 71.3
500 3.52 (m) 76.9 3.45 (m) 78.2
600a 3.84 (m) 61.9 3.87 (m) 62.3
600b 3.68 (m) 3.68 (m)
700a 4.85 (d, 6.6) 99.1 — —
700b 4.75 (d, 6.6) — —
10 00 5.24 (d, 1.8) 102.7 5.28 (d, 1.8) 101.8
2000 3.86 (m) 70.0 3.89 (m) 72.2
3000 3.57 (dd, 9.0, 3.0) 72.2 3.65 (m) 72.0
4000 3.38 (t, 9.0) 73.9 3.59 (m) 82.2
5000 3.92 (m) 72.3 4.01 (m) 68.5
6000 1.28 (d, 6.6) 18.2 1.30 (d, 6.6) 18.4
7000a — — 4.83 (d, 6.6) 99.2
7000b — — 4.66 (d, 6.6)
OCH3-700 3.42 (s) 56.5 — —
OCH3-

7000
— — 3.41 (s) 56.4

a 1H NMR measured at 600 MHz, 13C NMR measured at 150 MHz; obtained in
CD3OD with TMS as internal standard. Assignments based on HMQC and HMBC
NMR spectra.

b J values (Hz) are given in parentheses.
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A sample solution containing pure naringin in MeOH was
directly treated for 20 min and the conversion products were
monitored using HPLC analysis. The dried product exhibited signif-
icantly enhanced antioxidant activity in DPPH radical14 and perox-
ynitrite15 assays than the parent naringin, where the respective
IC50 values were 109.7 ± 4.3 and 15.6 ± 1.3 lg/mL. In the present
investigation, successive column chromatographic purification of
the sample treated for 20 min led to the isolation of the new flava-
none derivatives narinplasmins A (2)16 and B (3),17 along with
known 2R-naringin18,19 (Fig. 1). The known compound was identi-
fied by comparing its spectroscopic data with the literature data.

Compound 2 was obtained as a yellow amorphous powder,
[a]D

25 �94.0 (MeOH). Its molecular formula was determined to be
C29H36O15 using positive HRFABMS, which showed a protonated
molecular ion peak at m/z 625.2153 [M+H]+. The absorption max-
ima at 225, 282, and 325 nm in the UV spectrum were attributed to
a flavanone nucleus.20 The presence of the flavanone skeleton was
further suggested by the 1H NMR spectrum of 1 (Table 1) for diag-
nostic H-2 and H-3 signals at dH 5.38 (1H, dd, J = 13.2, 3.4 Hz, H-2),
3.17 (1H, dd, J = 17.0, 13.2 Hz, H-3a), and 2.75 (1H, dd, J = 17.0, 3.4
Hz, H-3b). In addition to the diagnostic aliphatic signals, the spec-
trum also included signals attributable to A2B2 aromatic protons at
dH 7.32 (2H, d, J = 8.4 Hz, H-20,60) and 6.81 (2H, d, J = 8.4 Hz, H-30,50),
and two meta-coupled AB-type aromatic protons at dH 6.17 (1H, d,
J = 1.8 Hz, H-8) and 6.15 (1H, d, J = 1.8 Hz, H-6). In addition to the
aglycone moiety, two characteristic anomeric protons at dH 5.24
(1H, d, J = 1.8 Hz, H-1000) and 5.13 (1H, d, J = 7.8 Hz, H-100), and 10
oxygen-bearing protons at dH 3.92–3.38 were observed, along with
a doublet methyl proton at dH 1.28, indicating the presence of neo-
hesperidoside. The 1H NMR spectrum of 2 also showed resonances
corresponding to a methoxymethyl group21 at dH 4.85 (1H, d, J = 6.6
Hz, H-700a), 4.75 (1H, d, J = 6.6 Hz, H-700b), and 3.42 (3H, s, OCH3-700).
Consistent with these 1H NMR observations, the 13C NMR and
HSQC spectra of 2 closely resembled those of the parent com-
pound, naringin,16 except for the presence of an oxygenated
methoxymethyl signal. The linkage point of the methoxymethyl
residue on the sugar moiety in 2 was determined unambiguously
from the key HMBC spectrum, which showed H-700/C-400, H-400/C-
700 correlations (Fig. 2), and a slight downfield shift of C-400 (dc

78.4) and H-400 (dH 3.71) compared with naringin. The absolute ste-
reochemistry at C-2 was determined as R on the basis of a positive
Cotton effect at 285 nm (De +3.25) in the circular dichroism (CD)
spectra based on a comparison with the authentic analogs.22

Therefore, the absolute structure of narinplasmin A (2) was fully
assigned as shown in Figure 1.

HRFABMS analysis of compound 3 showed a protonated ion
peak at m/z 625.2137 [M+H]+, the same as that of 2, indicating
the molecular formula of 3 (C29H36O15). The 1H and 13C NMR spec-
tral data of 3 were also nearly identical to those of 2, except for the
slight downfield shift of C-4000 (dc 82.2) and H-4000 (dH 3.59) in 3. The
location of the alkyl aliphatic chain was unambiguously elucidated
by key HMBC correlations of H-7000/C-4000, H-4000/C-7000 (Fig. 2). The CD
spectrum of 2 showed a negative Cotton effect at 284 nm (De
�3.40),22 indicating that the absolute configuration of 2 was the
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Figure 1. Structures of transformed products 2–4 of naringin by
2S configuration. Consequently, the structure of compound 3 was
fully assigned as narinplasmin B, which is a new biosynthetic
transformation product of 1.

Naringin is known as one of the major bitter flavonoid compo-
nents of grapefruits, oranges, lemons, and limes, though it has little
antioxidant activity.23 The biotransformed products 2, 3, and 4 iso-
lated from DBD plasma-treated naringin were evaluated for anti-
oxidant activity using DPPH and ONOO� based on the previously
reported procedure.14,15 As summarized in Table 2, the modified
naringin derivative having 2S stereochemistry at the C-2 position,
narinplasmin A (2), was found to exhibit significantly higher DPPH
radical and ONOO� scavenging activities than the parent naringin
(1) having the 2R configuration. Interestingly, another structurally
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Figure 2. Key COSY and HMBC correlations of 2 and 3.

Table 2
Antioxidant activity of compounds 2–4 isolated from plasma treated naringin

Compound IC50 valuea (lM)

DPPH ONOO�

Plasma treated naringin 109.7 ± 4.3b 15.6 ± 1.3b

1 >300 >300
2 57.3 ± 2.3 4.1 ± 0.3
3 148.2 ± 3.8 256.1 ± 5.3
4 93.8 ± 3.2 >300
(+)-Catechinc 23.9 ± 1.5 —

L-Penicillaminec — 5.2 ± 0.3

a All compounds were examined in triplicate experiments.
b Results expressed as IC50 value using lg/mL unit.
c Used as positive controls.
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similar modified naringin with 2S stereochemistry, narinplasmin B
(3), was found to exhibit relatively weaker scavenging activity in
these antioxidant bioassays than 2. Furthermore, the isolated
naringin isomer, 2R-naringin (4), showed slightly enhanced DPPH
radical scavenging activity, with an IC50 value of 93.8 ± 3.2 lM.
These results indicate that the location of the alkyl aliphatic chain
on the sugar moiety and the absolute configuration at the C-2 posi-
tion of naringin may influence the antioxidant activity.

Various naturally occurring flavonoids have been converted into
modified products using microbial and enzymatic transforma-
tions.24 Previous studies have demonstrated that the microbial
transformates of naringin derived from Aspergillus saitoi and Trich-
oderma harzianum exhibited significantly improved antioxidative
activity.25,26 In a prior study, we reported the great utility of
plasma for increasing food functionality.9 Our systematic investi-
gation related to the biotransformation of natural products using
DBD plasma demonstrated that DBD plasma-treated naringin
exhibited potentially improved antioxidative activity against the
DPPH radical and ONOO�, indicating that the stereochemistry in
the B-ring at C-2 and the linkage point of the alkyl chain in the
sugar moiety of naringin are strongly correlated with achieving
enhanced antioxidant activity.

The results of the current study verify that narigin is trans-
formed into two new, modified components 2 and 3, along with
2R-naringin, a known compound. The structures of the new com-
pounds were elucidated by interpreting the spectroscopic data.
The new flavanone 2 exhibited more potent antioxidant activity
than the parent naringin. The biotransformation of naringin by
the DBD plasma treatment may be a valuable and convenient strat-
egy for enhancing the activity of natural products. More systematic
investigation employing DBD plasma is the subject of additional
studies for further enhancing the activity of naringin.
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