¹Ù·Î°¡±â ¸Þ´º

¹Ù·Î°¡±â ¸Þ´º º»¹®³»¿ë ¹Ù·Î°¡±â ¸ÞÀθ޴º ¹Ù·Î°¡±â

ÁÖ¿ä¾È³»

HOME »çÀÌÆ®¸Ê ENGLISH

FONT SIZE

ÆùƮũ±â Å°¿ò 100% 110% 120% 130% 140% ÆùƮũ±â ÁÙÀÓ
¸Þ´ºº¸±â

±¹Á¦ÇмúÁö³í¹®

Á¦¸ñ
(2014) Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynam
ÀÛ¼ºÀÏ
2022-01-10
Á¶È¸¼ö
92


(2014) Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynamics and experimental validation
 
Journal: biosystems engineering 122, pp.42 - 61.
 
Author:  Jessie Pascual P. Bitog, In-Bok Lee, Hee-Mock Oh, Se-Woon Hong, Il-Hwan Seo, Kyeong-Seok Kwon


Abstract
  A numerical simulation using computational fluid dynamics (CFD) was utilised to investigate the flow hydrodynamics of cylindrical bubble column type photobioreactors (PBRs) with a 30 l culture medium. To establish the reliability of the simulation study, the CFD model was validated using particle image velocimetry (PIV) computed data under various air flow rates. There were 32 simulation cases for the study comprising two PBR designs, four air flow rates and four nozzle size diameters. Hydrodynamic analyses such as % volume of dead zones, average circulation time and turbulence intensity inside the simulated PBRs were evaluated. Results have shown that the most appropriate PBR for microalgae cultivation was a design with internal baffle and an extended cone-shaped bottom section. In addition, the recommended nozzle diameter was found to be 10 mm and a minimum air flow rate of 0.10 vvm. To eliminate dead zones inside the PBR, the flow rate can be slightly increased but should not exceed 0.15 vvm. Practical evaluation through laboratory experiments has further confirmed the results of the study where the biomass concentration of Chlorella vulgaris from the proposed PBR was significantly higher compared to the standard PBR design. Based on the numerical investigation and practical evaluation, the improved PBR can be seen to be more effective in culturing microalgae particularly for larger scale mass production.



Keywords: Algae biomass concentration, Circulation time, Computational fluid dynamics (CFD), Particle image velocimetry (PIV), Dead zones, Turbulence intensity


Download Link :

https://doi.org/10.1016/j.biosystemseng.2014.03.006


 
÷ºÎÆÄÀÏ:
÷ºÎÆÄÀÏÀÌ ¾ø½À´Ï´Ù.
´ÙÀ½±Û
(2014) Measurement and prediction of soil erosion in dry field using portable wind erosion tunnel
/ A3EL
(2014) Measurement and prediction of soil erosion in dry field using portable wind erosion tunnel Journal:biosystems engineering 118, pp.68 - 82. Author:Se-Woon Hong , In-Bok Lee, Il-Hwan Seo, Kyeong-Seok Kwon, Tae-Wan Kim, Young-Hwan Son, Minyoung Kim Abstract The purpose of this study wa..
ÀÌÀü±Û
(2014) Prediction of the spread of highly pathogenic avian influenza using a multifactor network: Part 1- D
/ A3EL
(2014) Prediction of the spread of highly pathogenic avian influenza using a multifactor network: Part 1- Development and application of computational fluid dynamics simulations of airborne dispersion Journal:biosystems engineering 121, pp.160 - 176. Author:Il-Hwan Seo, In-Bok Lee, Oun-Kyung..