¹Ù·Î°¡±â ¸Þ´º
¹Ù·Î°¡±â ¸Þ´º
º»¹®³»¿ë ¹Ù·Î°¡±â
¸ÞÀθ޴º ¹Ù·Î°¡±â
ÁÖ¿ä¾È³»
HOME
»çÀÌÆ®¸Ê
100%
110%
120%
130%
140%
³ó¸²±â»ó¼ºñ½º
ÀüÀÚ±âÈĵµ
³ó¸²»ýŰèFlux°üÃø
³ó¸²Ãà»ê¾÷ Áö¿ø ¸ðµ¨¸µ
³ó¸²±â»ó R&D
¿¬±¸°úÁ¦
KoFlux
iLEAPS-Korea
³ó¸²»ýÅ¿¬±¸ÀÚ·á
³ó¸²±â»ó°üÃøÀÚ·á
Publication
³ó¸²±â»ó°ü·ÃÁ¤º¸
±³À° ¹× ÈÆ·Ã
³ó¸²±â»ó ¹®ÇåÁ¤º¸
¿¸°¸¶´ç
°øÁö»çÇ×
º¸µµÀÚ·á
±â°ü¼Ò°³
³ó¸²±â»ó¼¾ÅͼҰ³
ÁÖ¿ä¾÷¹«
¼±ÁøÈÀü·«
English
menu
³ó¸²±â»ó¼ºñ½º
³ó¸²±â»ó R&D
³ó¸²±â»ó°ü·ÃÁ¤º¸
¿¸°¸¶´ç
±â°ü¼Ò°³
English
³ó¸²±â»ó R&D
¸Þ´º¿±â
¿¬±¸°úÁ¦
2021³âµµ
2020³âµµ
2019³âµµ
2018³âµµ
2017³âµµ
2016³âµµ
2015³âµµ
2014³âµµ
2013³âµµ
2012³âµµ
KoFlux
µ¥ÀÌÅͺ£À̽º
ÀÚ·á󸮼ºñ½º
°ü·Ã¼ÒÇÁÆ®¿þ¾î
iLEAPS-Korea
Home
Members
³ó¸²»ýÅ¿¬±¸ÀÚ·á
³ó¸²±â»ó°üÃøÀÚ·á
±â»óû(³ó¾÷±â»ó)-°üÃøÁöÁ¡ ¼Ò°³
±â»óû(³ó¾÷±â»ó)-ÀÚ·á¿äû
±â»óû(Á¾°ü±â»ó)
°æ±âµµ ³ó¾÷±â¼ú¿ø
ÃæÃ»³²µµ ³ó¾÷±â¼ú¿ø
Á¦ÁÖµµ ³ó¾÷±â¼ú¿ø
³ó¾÷±â»ó ¿¬¿ùº¸
Publication
2021³âµµ
2020³âµµ
2019³âµµ
2018³âµµ
2017³âµµ
2016³âµµ
2015³âµµ
2014³âµµ
2013³âµµ
2012³âµµ
2011³âµµ
2010³âµµ
HOME
> ³ó¸²±â»ó R&D > Publication > 2019³âµµ
2019³âµµ
º» »çÀÌÆ®´Â ´ëÇѹα¹ ÀúÀ۱ǹýÀ» ÁؼöÇÕ´Ï´Ù....
°ø°øÁú¼³ª ¹Ìdz¾ç¼Ó¿¡ À§¹èµÇ´Â ³»¿ë°ú ŸÀÎÀÇ ÀúÀÛ±ÇÀ» Æ÷ÇÔÇÑ ÁöÀûÀç»ê±Ç ¹× ±âŸ ±Ç¸®¸¦ Ä§ÇØÇÏ´Â ³»¿ë¹°¿¡ ´ëÇÏ¿©´Â µî·ÏÇÒ ¼ö ¾øÀ¸¸ç, ¸¸ÀÏ ÀÌ¿Í °°Àº ³»¿ëÀÇ °Ô½Ã¹°·Î ÀÎÇØ ¹ß»ýÇÏ´Â °á°ú¿¡ ´ëÇÑ ¸ðµç Ã¥ÀÓÀº º»Àο¡°Ô ÀÖ½À´Ï´Ù.
°³ÀÎÁ¤º¸º¸È£¹ý¿¡ ÀǰÅÇÏ¿© ÁֹιøÈ£, ÈÞ´ëÆù¹øÈ£, ÁýÁÖ¼Ò Ç÷¾×Çü, Á÷¾÷ µîÀÇ °Ô½Ã³ª µî·ÏÀ» ±ÝÁöÇÕ´Ï´Ù.
ȨÆäÀÌÁöÀÇ °Ô½Ã¹°¿¡¼ Á¤º¸ÁÖü°¡ »èÁ¦¿ä±¸½Ã µ¿ÀÇÇÏ¿¡ »èÁ¦Ã³¸®¸¦ ÇϰڽÀ´Ï´Ù.
ÃÑ
15
°³ÀÇ °Ô½Ã¹°ÀÌ ÀÖ½À´Ï´Ù.
°Ô½Ã¹° °Ë»ö
Á¦¸ñ
±Û¾´ÀÌ
ºñ¹Ð±ÛÀÔ´Ï´Ù...
ºñ¹Ð¹øÈ£¸¦ ÀÔ·ÂÇØÁÖ¼¼¿ä
ºñ¹Ð¹øÈ£
2019³âµµ ¸ñ·Ï
2019³âµµ ¸ñ·Ï
¹øÈ£
Á¦¸ñ
µî·ÏÀÏ
15
Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression : Mechanistic insights from observations and process-based simulations.
2022.04.06
14
New Gap-filling strategies for long-period flux data gaps using a data-driven approach.
2022.04.06
13
Modification of the moving point test method for nighttime eddy co2 flux filtering on hilly and complex terrains.
2022.04.06
12
Gap-filling approaches for eddy covariance methane fluxes : A comparison of three machine learning algorithms and traditional method with principal component analysis.
2022.04.06
11
Fluxnet-ch4 synthesis activity : Objectives, observations, and future directions.
2022.04.04
10
Impact of leaf area index from various sources on estimating gross primary production in temperate forests using the jules land surface model.
2022.04.04
9
The influence of tree structural and species diversity on temperate forest productivity and stability in korea.
2022.04.04
8
Anticipating global terrestrial ecosystem state change using fluxnet.
2022.04.04
7
Àå±â °üÃø ¿¡µð Ç÷°½º ÀÚ·áÀÇ ¿¬¼Ó¼º È®º¸¿¡ ´ëÇÏ¿© : °³È¸·Î ¹× ºÀÆóȸ·Î ±âüºÐ¼®±âÀÇ ¾ß¿Ü »óÈ£ ºñ±³
2022.04.04
6
³ó¸²»ýŰè Áö¼Ó°¡´É¼º Á¦°í¸¦ À§ÇÑ ³ó¸²±â»óÇÐÀÇ µµÀü°ú °úÁ¦
2022.04.04
5
¸Ó½Å·¯´× ±â¹ýÀÇ »ê¸² ÃÑÀÏÂ÷»ý»ê¼º ¿¹Ãø ¸ðµ¨ ºñ±³.
2022.04.04
4
Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: Correction Method for Daytime Hourly Air Temperature over Complex Terrain
2022.04.04
3
Estimating the Monthly Precipitation Distribution of North Korea Using the PRISM Model and Enhanced Detailed Terrain Information
2022.04.04
2
Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information.
2022.04.04
1
Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring
2022.04.04
1