The Variations of O₃ in relation with BVOCs at Taehwa Research Forest in South Korea

Hyunjin An¹, Meehye Lee¹, Hakyong Kim¹,², Saewung Kim³, Alex Guenther², Hyunseok Kim³, Juhan Park⁴, Hyunjoo Park⁴

¹ Department of Earth Environmental Science, Korea University, Seoul, South Korea, ² Department of Earth System Science, School of Physical Science, University of California, Irvine, CA, USA, ³ Forest Ecophysiology Laboratory, Seoul National University, Seoul, South Korea, ⁴ National Institute of Environmental Research, Incheon, South Korea

* Now at: National Center for Agro Meteorology, Seoul, South Korea

Contact: Hyunjoo An gjwns84@korea.ac.kr

Taking pictures are permitted but notice me when you use the figures.

Taehwa Research Forest (TRF)
- Located near Seoul Metropolitan Area (SMA)
- Mixed forest (mainly coniferous near measuring tower)
- Mainly deciduous forest, afforested coniferous near measuring tower
- Originally deciduous tree forest
- =1km SE from Seoul Metropolitan Area (SMA)
- Highway located east near

Vertical Variations
- O₃ conc.: above + below canopy
 - 0.2, high, enough condition for photochemistry
 - Look good in canopy (especially May & June)

- Highest BVOCs in June
 - BVOCS concentration above + below canopy
 - Direct emission from vegetation

Model Calculation
- Initial conditions
 - 4 scenarios to verify HONO & RO radicals
 - Rapid H₃O⁺ increase in the morning with HONO condition
 - OH decreased reaction with BVOCs, especially high in afternoon
 - NOx anaerobic condition
 - Both HONO & BVOCs affected H₂O₂, NO radicals
 - HONO affected by OH from HONO, RO radicals, affected by BVOCs
 - Reactivity: NOₓ + O₃ + BVOCs

Production Rate of O₃
- S1(red), S2(blue), S3(green), S4(violet)
- HONO, NO → RO radicals
- RH₂O₂ increase in the morning with HONO condition
- OH decreases reaction with BVOCs, especially high in afternoon

Projection of OH activities
- NO from NO, O₃ + BVOCs
- RO radicals

Conclusion
- OH from photolysis of HONO in the morning
- BVOCs contribute O₃ production
- Initiative radical chemistry
- Isoprene contributes RO radicals
- Monoterpenes contribute O₃
- Deposition velocity Vₐ = 0.15 cm/s

Acknowledgement
This presentation supported by the project titled "Construction of Ocean Research System and their Application Studies" funded by the Ministry of Science and Information, Korea.