Modelling Forest Thinning Effects by Reduction of Leaf Area Index in JULES LSM

Juhan Park1, Hyun Seok Kim123

1Department of Forest Sciences, Seoul National University, Korea
2National Center for Agro Meteorology, Korea
3Research Institute of Agricultural and Life Sciences, Seoul National University, Korea
Outline

• Forest Management in Land Surface Model

• Thinning-induced changes of microenvironmental conditions

• The effects of thinning on stand transpiration and productivity

• Modelling thinning effects by modifying leaf area index
LMC Vs. LCC

- Impacts on surface temperature
 - Land Management Change (LMC) ≡ Land Cover Change (LCC) [Luyssaert et al. 2014]

Biophysical effects of land management change, or land cover change.
Forest Management Effects

- Biogeochemical changes
 - Carbon sink strength
 - Direct carbon uptake capacity
 - GHGs emissions

- Biophysical changes
 - Forest structural changes
 - Albedo, Energy partitioning to sensible heat flux
 - Water and Energy fluxes
Consequence of Forest Management

![Pie charts and table]

Contribution to changes since 1750

<table>
<thead>
<tr>
<th></th>
<th>ΔRF due to GHGs (W m⁻²)</th>
<th>ΔRF due to surface change (W m⁻²)</th>
<th>ΔTₐ, summer (K)</th>
<th>ΔPrecipitation, summer (mm per season)</th>
<th>ΔAtmospheric carbon (Pg C)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenhouse gas emissions</td>
<td>2.98*‡</td>
<td>0.00</td>
<td>1.71*‡</td>
<td>-6</td>
<td>247§</td>
</tr>
<tr>
<td>European</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land-use change</td>
<td>0.01*</td>
<td></td>
<td></td>
<td>0.11*¶</td>
<td>0.12*#</td>
</tr>
<tr>
<td>Land-cover change</td>
<td>-0.01</td>
<td>0.12*¶</td>
<td>0.02*¶</td>
<td>0</td>
<td>-0.7**</td>
</tr>
<tr>
<td>Forest management</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.10*#</td>
<td>-3*‡</td>
<td>1.9</td>
</tr>
<tr>
<td>Species conversion</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.08*#</td>
<td>-4*‡</td>
<td>-0.6‡</td>
</tr>
<tr>
<td>Wood extraction</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.02*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Naudts et al. 2016]
Thinning?

- Partial removal of trees from forest plantations

- Objects
 - Reduce competition intensity among trees
 - Produce more valuable trees
 - Reduce natural fire risk
 - Promote the forest health
Schematic Representation of Thinning

Before

After
Changes of Environmental and Physiological Conditions by Thinning

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Water Content</td>
<td>Leaf Area</td>
</tr>
<tr>
<td>(Lagergren et al., 2008; Simonin et al., 2007)</td>
<td>[Harrington and Reukema, 1983]</td>
</tr>
<tr>
<td>Competition</td>
<td>Basal Area</td>
</tr>
<tr>
<td>Hydrological Conductivity</td>
<td></td>
</tr>
<tr>
<td>(Shinozaki et al., 1964a; b)</td>
<td>[Harrington and Reukema, 1983]</td>
</tr>
<tr>
<td>Fertilization effect</td>
<td></td>
</tr>
<tr>
<td>(Wollem and Schubert, 1975)</td>
<td></td>
</tr>
</tbody>
</table>
Thinning Effects on Productivity

[Mäkinen and Isomäki, 2004] [Franklin et al., 2009]
The Objectives

- Quantify the effects of thinning on stand transpiration and productivity
- Modelling thinning effects with JULES land surface model
Part 1.
Quantification of Thinning Effects on Stand Transpiration and Productivity
Study Site

Mt. Taehwa
Gyounggi-Do, Korea

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinning area (ha)</td>
<td>0.54</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>129~219</td>
</tr>
<tr>
<td>Aspect</td>
<td>NE 50~60</td>
</tr>
<tr>
<td>Annual precipitation (mm)</td>
<td>1329.2</td>
</tr>
<tr>
<td>Annual mean air temperature (°C)</td>
<td>10.3</td>
</tr>
<tr>
<td>Tree height (m)</td>
<td>19.1</td>
</tr>
<tr>
<td>Mean DBH (cm)</td>
<td>27.9</td>
</tr>
<tr>
<td>Stand density (no./ha)</td>
<td>440</td>
</tr>
</tbody>
</table>
Thinning Treatments

20%

40%

75m

50m

13/30
Stand Transpiration - Sapflux Density

- Thermal dissipation probe methods (Granier, 1985)

\[\Delta T = T_H - T_R \]
Stand Productivity

- Allometric equation
 \[Y = 0.2849 \times (DBH)^{2.0553} \]
 [Ryu et al. 2014]

- Dendrometer
Environmental conditions

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta (°C)</td>
<td>10.7</td>
<td>11.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Q (µmol m⁻² s⁻¹)</td>
<td>293.4</td>
<td>271.1</td>
<td>262.4</td>
</tr>
<tr>
<td>D (kPa)</td>
<td>0.53</td>
<td>0.53</td>
<td>0.52</td>
</tr>
<tr>
<td>PRCP (mm d⁻¹)</td>
<td>1685.6</td>
<td>1366.9</td>
<td>791.5</td>
</tr>
</tbody>
</table>
Thinning - Stand Transpiration

![Graph showing Thinning Stand Transpiration](image)

- **E_T (mm y$^{-1}$)**
- Lines and markers for Con, LT, HT
Thinning - Diameter Growth

- DOY (Days of Year)
- RGR (%) - Relative Growth Rate
- DBH increment (mm)

Graphs show the growth patterns of trees from 2012 to 2014, comparing different treatments (Con, LT, HT) for Relative Growth Rate and DBH increment.

Legend:
- Con: Control
- LT: Low Treatment
- HT: High Treatment
Thinning - Stand Productivity

![Graph showing NPP (gC m$^{-2}$ yr$^{-1}$) from 2012 to 2014. The graph includes lines for Con, LT, and HT treatments.]
Thinning - Water Use Efficiency

![Graph showing water use efficiency (WUE) over time for different treatments: Con, LT, HT.](image)
Part 2.
Modelling Thinning Effects by Reduction of Leaf Area Index
Procedure of Thinning Effects Estimation by JULES LSM

- **Site-specific Optimization of the Model**
 - Sensitivity of canopy radiation transfer model
 - Sensitivity test and modification of plant functional type related parameters
 - Model validation by comparing with EC flux data

- **Estimation of Thinning Effects**
 - Modification of LAI input data by measured thinning induced reduction and recovery of LAI
Sensitivity of Canopy Radiation Modules
Parameter Sensitivity Analysis

Changes in GPP (%)

Changes in LE (%)
Model Validation
- Model estimation Vs. EC-measured flux

\[r^2 = 0.77 \]

\[r^2 = 0.46 \]
Leaf Area Reduction by Thinning

![Graph showing LAI (m² m⁻²) over time with different treatments: Con, LT, HT.](image)
LAI Reduction – GPP/NPP

GPP (gC m\(^{-2}\) y\(^{-1}\))

Year

NPP (gC m\(^{-2}\) y\(^{-1}\))

Year
LAI Reduction - LE

![Graph showing LE (M J m⁻² y⁻¹) over years from 2008 to 2014. The graph compares three conditions: Con, LT, and HT.]
Difference b/w Measurement and Modeling Results
Conclusion

- Initial reduction and gradual recovery of stand transpiration and productivity by heavy thinning

- Decrease of GPP, Increase of NPP, little change in LE by model estimation with reduced leaf area

- There is discrepancy between field measured thinning effects and model estimated thinning effects, which reveals thinning related changes are not constraint by leaf area reduction
Thank You

This work was funded by the Weather Information Service Engine Program of the Korea Meteorological Administration under Grant KMIPA-2012-0001.
Parameter Sensitivity Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Default</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>neff_io</td>
<td>Scale factor relating V_{cmax} with leaf nitrogen concentration</td>
<td></td>
<td>0.8e-3</td>
<td>0.8e-3</td>
</tr>
<tr>
<td>nl0_io</td>
<td>Top leaf nitrogen concentration</td>
<td></td>
<td>0.030</td>
<td>0.046</td>
</tr>
<tr>
<td>nmass_io</td>
<td>Top leaf nitrogen content per unit mass</td>
<td>kgN kgLeaf$^{-1}$</td>
<td>0.0210</td>
<td>0.0210</td>
</tr>
<tr>
<td>kn_io</td>
<td>Decay of nitrogen through the canopy</td>
<td></td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>alpha_io</td>
<td>Quantum efficiency</td>
<td>mol CO$_2$ / mol PAR photons</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>co2_mmr</td>
<td>Concentration of atmospheric CO2, expressed as a mass mixing ratio.</td>
<td></td>
<td>5.241e-4</td>
<td>5.83e-4</td>
</tr>
<tr>
<td>canht_ft_io</td>
<td>The height of each PFT</td>
<td></td>
<td>16.38</td>
<td>20</td>
</tr>
</tbody>
</table>
Future Works

If we want to change this to

We need to add/modify these modules (color in red)

[ORCHIDEE]

[ORCHIDEE-CAN]

[Naudts et al. 2015]