Estimating Forest Water Use in Gyeonggi Province, Korea for User-Customized Forest Management Using Localized JULES Model

HoonTaek Lee¹, Juhan Park¹,², Sungsik Cho³, Hana Na², Hyeonjin Shin², Seung-Jae Lee², Minseok Kang², Joon Kim²,³, ⁴, Hyun Seok Kim¹, ², ³, ⁵

¹Department of Forest Sciences, Seoul National University
²National Center for AgroMeteorology, Seoul National University
³Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University
⁴Program in Rural Systems Engineering, Department of Landscape Architecture & Rural Systems Engineering, Seoul National University
⁵Research Institute of Agriculture and Life Sciences, Seoul National University
• Evapotranspiration occupies about 60% of total precipitation (Choudhury et al. 1998, Alton et al. 2009)

• Amount of the evapotranspiration in forest ecosystem affects downstream flow rate, so also influences the downstream user including human population
ATMOSPHERE

- CO₂ Fluxes
- NPP, Heat Fluxes
- Surface Parameters
- Soil Water Stress
- Snow Cover
- Surface Hydrology
- Infiltration
- Soil Moisture, Temperature
- Evaporative Fluxes
- Surface Exchange
- Urban
- Vertical Fluxes
- Litterfall
- Soil Carbon
- Surface Conductance
- Plant Physiology
- Vegetation Dynamics

Model
- aDGVM (adaptive dynamic global vegetation model) (Scheiter and Higgins 2009)*
- BATS (Biosphere-atmosphere Transfer Scheme) (Dickinson et al. 1984)
- BETHY (Biosphere Energy Transfer Hydrology Scheme) (Knorr 2000; Ziehn et al. 2011)*
- BIOME3 (Haxeltine and Prentice 1996a)
- BIOME4 (Kaplan et al. 2003)*
- BIOME-BGC 4.2 (Running et al. 2010)*
- CLM 4.5 (Community Land Model) (Oleson et al. 2013)*
- CTEM (Canadian Terrestrial Ecosystem Model) (Arora 2003; Arora and Boer 2010)*

Photosynthesis
- FvCB (Best et al., 2011)
- FvCB and Bayesian approach
- FvCB, Haxeltine and Prentice (1996a)
- FvCB
- FvCB

Stomatal Conductance
- Collatz et al. (1991)
- Collatz et al. (1992)
- No
- Jarvis (1976)
- Ball et al. (1987)
- Jarvis and McNaughton (1986)
- Haxeltine and Prentice (1996a)
- Kömer (1995)
- Collatz et al. (1991)
- Collatz et al. (1992)
- Sellers et al. (1996)
- Collatz et al. (1991)
- Collatz et al. (1992)

Joint UK Land Environment Simulator

(Best et al., 2011)

(Rezende et al., 2016)
Objectives

- Test the localized JULES model performance in estimating evapotranspiration
 - Comparison with eddy covariance measurement

- Estimating amount of forest water use in Gyeonggi Province using high-resolution meteorological input data
 - Using a configuration optimized to study site
Sensitivity Analysis

• Basic information for localization

• Sensitivity \((\Delta) = \frac{Modified - Default}{Default} \times 100 \) (%)

• Change one parameter at a time from -30 % to +30 % (by 10 %)

• Default setting of JULES loobos dataset added with
 • Soil ancillary information
 • Trait-based physiology (Another way for calculating \(V_{cmax} \))
 • Spin-up so that the model environment stabilized (Tolerance of Soil moisture and soil temperature is 1 %)

⇒ Default Configuration
• Default Configuration + local parameter value
 • Leaf Mass per Area (LMA), Leaf nitrogen content, canopy height, soil carbon, specific soil respiration rate

➔ Optimized Configuration

• Two forest types (Conifer: TCK, Deciduous: TDK) in Mt. Taehwa

• Comparison with eddy covariance measurement

• Running Period
 • TCK: Jan. 1, 2015 ~ Jul. 20, 2017
 • TDK: Mar. 1, 2015 ~ Jul. 20, 2017
Extend to Gyeonggi Province

Tree Species Re-classification
- 2 types as default (needleleaf trees, broadleaf trees)
- 5 types as re-classification
 (Pinus spp., Larix spp., other needleleaf trees, Quercus spp., other broadleaf trees)

- 12-days weather forecasting data
- 810 m x 810 m, hourly
Sensitivity of Evapotranspiration

Change in Evapotranspiration

-40.0%
-30.0%
-20.0%
-10.0%
0.0%
10.0%
20.0%
30.0%
40.0%

Soil Carbon
leaf mass/leaf area
Nitrogen content of upper canopy leaf
Quantum efficiency
$V_{c_{max}} - N$ linear regression coeff.
$[CO_2]$
Canopy height
Vertical nitrogen distribution pattern within canopy

Soil Respiration at 25 °C of soil
Temp.

-30% -20% -10% 10% 20% 30%
TCK Evapotranspiration

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Sum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>465.8</td>
<td>427.5</td>
<td>244.3</td>
</tr>
<tr>
<td>w/o condensation</td>
<td>490.5</td>
<td>459.9</td>
<td>249.1</td>
</tr>
<tr>
<td>Default</td>
<td>708.9 (+45%)</td>
<td>723.5 (+57%)</td>
<td>306.0 (+23%)</td>
</tr>
<tr>
<td>Optimized</td>
<td>725.0 (+48%)</td>
<td>749.5 (+63%)</td>
<td>310.9 (+25%)</td>
</tr>
</tbody>
</table>

ET

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>465.8</td>
<td>427.5</td>
<td>244.3</td>
</tr>
<tr>
<td>EST_Default</td>
<td>490.5</td>
<td>459.9</td>
<td>249.1</td>
</tr>
<tr>
<td>EST_Opt</td>
<td>725.0 (+48%)</td>
<td>749.5 (+63%)</td>
<td>310.9 (+25%)</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>ET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>480.1</td>
<td>484.1</td>
<td>228.1</td>
</tr>
<tr>
<td>w/o</td>
<td>494.2</td>
<td>505.9</td>
<td>232.5</td>
</tr>
<tr>
<td>condensation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default</td>
<td>553.9 (+12%)</td>
<td>766.0 (+51%)</td>
<td>268.2 (+15%)</td>
</tr>
<tr>
<td>Optimized</td>
<td>557.8 (+13%)</td>
<td>782.6 (+55%)</td>
<td>271.3 (+17%)</td>
</tr>
</tbody>
</table>

TDK Evapotranspiration

- **Obs**: Observed ET values.
- **Est_Default** and **Opt** represent ET estimates with and without condensation, respectively.
- **Annual Sum** shows the total ET over the years with percentage increases compared to the previous year.

Graph showing the daily ET from 2015 to 2017 with observed and estimated ET values.
TCK GPP

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>1729.0</td>
<td>1664.2</td>
<td>1062.8</td>
</tr>
<tr>
<td>Default</td>
<td>1690.1 (-2%)</td>
<td>1824.6 (+10%)</td>
<td>893.0 (-16%)</td>
</tr>
<tr>
<td>Optimized</td>
<td>1654.2 (-4%)</td>
<td>1926.3 (+16%)</td>
<td>1032.5 (-3%)</td>
</tr>
</tbody>
</table>
TDK GPP

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>1465.4</td>
<td>1788.6</td>
<td>1027.2</td>
</tr>
<tr>
<td>Default</td>
<td>2163.9 (+48%)</td>
<td>2169.5 (+21%)</td>
<td>913.9 (-11%)</td>
</tr>
<tr>
<td>Optimized</td>
<td>1814.8 (+24%)</td>
<td>1749.9 (-2%)</td>
<td>794.9 (-23%)</td>
</tr>
</tbody>
</table>
Forest Water Use in NCAM-LAMP Domain

Period

Jul. 2, 2017 12:00 - Jul. 14, 2017 12:00

Evapotranspiration

284,366.7 mm / 16641 cells
Daily avg. 1.42 mm
Obs. daily avg. 1.17 mm
• Evapotranspiration in JULES is most sensitive to C_i/C_a ratio and vertical nitrogen distribution pattern within canopy.

• Evapotranspiration in JULES seems to overestimate in both needleleaf and broadleaf stands partly due to the no consideration on water condensation. This tendency is more notable in the needleleaf stand.

• There seems minor improvement between default configuration and optimized one.

• The improvement can’t be made until the parameter which is sensitive to estimating evapotranspiration is measured and used.

• For the estimation in large extent, it’s needed to prepare more observation sites or another estimating method to compare and validate the estimation performance.

Summary
Thank you