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explorative study of serum 
biomarkers of liver failure after liver 
resection
Kyung chul Yoon1,4, Hyung Do Kwon2,4, Hye-Sung Jo1, Yoon Young choi1, Jin-I Seok1, 
Yujin Kang3, Do Yup Lee3 ✉ & Dong-Sik Kim1 ✉

conventional biochemical markers have limited usefulness in the prediction of early liver dysfunction. 
We, therefore, tried to find more useful liver failure biomarkers after liver resection that are highly 
sensitive to internal and external challenges in the biological system with a focus on liver metabolites. 
Twenty pigs were divided into the following 3 groups: sham operation group (n = 6), 70% hepatectomy 
group (n = 7) as a safety margin of resection model, and 90% hepatectomy group (n = 7) as a liver failure 
model. Blood sampling was performed preoperatively and at 1, 6, 14, 30, 38, and 48 hours after surgery, 
and 129 primary metabolites were profiled. Orthogonal projection to latent structures-discriminant 
analysis revealed that, unlike in the 70% hepatectomy and sham operation groups, central carbon 
metabolism was the most significant factor in the 90% hepatectomy group. Binary logistic regression 
analysis was used to develop a predictive model for mortality risk following hepatectomy. the 
recommended variables were malic acid, methionine, tryptophan, glucose, and γ-aminobutyric acid. 
Area under the curve of the linear combination of five metabolites was 0.993 (95% confidence interval: 
0.927–1.000, sensitivity: 100.0, specificity: 94.87). We proposed robust biomarker panels that can 
accurately predict mortality risk associated with hepatectomy.

Liver resection is inevitable in the treatment of specific liver diseases. However, reduced liver volume can have 
many clinical manifestations such as small-for-size syndrome and post-hepatectomy liver failure, especially in 
cases of large volume resections of the liver. One of the main reasons for deteriorating liver function is high portal 
pressure, which results in high shear stress and sinusoidal injury1.

Conventional biochemical parameters for the evaluation of liver function in clinical settings, such as total 
bilirubin and prothrombin time (PT), are used as predictive markers. However, these biomarkers have limited 
usefulness in the prediction of early dysfunction. Total bilirubin and PT only have a 59% sensitivity in the pre-
diction of postoperative mortality2. Therefore, there is a need for more specific and accurate predictive markers. 
Metabolites are the final readouts of a range of endogenous biochemical activities. Changes in the metabolic 
profile are highly sensitive to internal and external challenges in biological systems. Thus, comprehensive metab-
olome information has great value in the diagnosis and prognosis of various diseases.

In this study, we used liver failure animal models to determine changes in the levels of serum metabolites that 
can be identified before conventional biochemical markers. Two pig models were used to investigate the regener-
ating or failing liver after liver resection. Resection of 70% of the liver provided a model of liver injuries that did 
not lead to liver failure and served as a successful regenerative model, and resection of 90% of the liver provided a 
model of liver failure that eventually led to death. We identified key metabolites associated with specific metabolic 
consequences according to the remnant liver volume after hepatectomy including a range of metabolites associ-
ated with central carbon-nitrogen metabolism such as intermediates of glycolysis, the tri-carboxylic acid (TCA) 
cycle, amino acid metabolism, and fatty acid metabolism. The systematic integration of multivariate statistics 
revealed a unique metabolic feature according to the remnant liver volume after liver resection, and a predictive 
model for mortality following hepatectomy was constructed.
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Results
conventional biochemical analysis. Figure 1 shows the serial changes in levels of total bilirubin (in 
mg/dL), aspartate aminotransferase (AST, in IU/L), and alanine aminotransferase (ALT, in IU/L) and in PT 
(INR). Total bilirubin level was significantly higher in the 90% resection group at 38 and 48 hours after sur-
gery (P = 0.0014 and P = 0.0002, respectively), and AST level was higher at 22, 30, 38, and 48 hours after sur-
gery (P = 0.015, P = 0.0128, P = 0.0314, and P = 0.0171, respectively). ALT level was significantly higher in the 
90% resection group at 1, 30, 38 and 48 hours after surgery (P = 0.0453, P = 0.0047, P = 0.0002, and P < 0.0001, 
respectively). PT was significantly higher in the 90% resection group at 14, 22, 30, 38, and 48 hours after surgery 
(P = 0.0035, P = 0.0017, P = 0.0001, P = 0.0002, and P < 0.0001, respectively).

Distinctive metabolic phenotypes according to mortality following hepatectomy. Untargeted 
metabolite profiling based on gas chromatography time-of-flight mass spectrometry (GC-TOF MS) revealed 129 
compounds that fairly covered the primary metabolic pathways such as glycolysis, TCA cycle, amino acid metab-
olism, and fatty acid metabolism. Unsupervised multivariate statistics based on principal component analysis 
(PCA) revealed three major clusters. The profiles of the 90% hepatectomy group were clearly separated from the 
pre-operation and sham operation subjects whereas profiles of the 70% hepatectomy group were relatively similar 
to those of the pre-operation and sham operation groups (Fig. 2).

For further statistical analysis, data were adjusted for preoperative metabolite levels. After the adjustment, 
significant differences were observed in 48 compounds in the 90% hepatectomy group at 14 hours, 24 compounds 
at 30 hours, and 46 compounds at 48 hours, respectively (Supplementary Table 1). Significant differences were also 
observed between the 70% hepatectomy group and the sham operation group 27, 5, and 34 metabolites at 14, 30, 
and 48 hours, respectively.

We used multivariate statistical models to systematically characterise the metabolic profiles unique to mortal-
ity after hepatectomy (90% hepatectomy group). We constructed a discriminant model for the 90% hepatectomy 
group that was distinct from the survival groups (i.e., the sham operation and 70% hepatectomy groups) at all 
time points. Based on orthogonal projection to latent structures-discriminant analysis (OPLS-DA) with 7-fold 
cross validation, high levels of explained variance and predictability were obtained (Q2Y of 0.995 and Q2 of 0.814) 
(Fig. 3). The variable importance in projection (VIP) analysis prioritised variables that contributed most to the 
discrimination (Fig. S1). The highest VIP score was observed for malic acid, followed by citric acid, xylitol, fuma-
ric acid, phosphate, and tocopherol alpha. Subsequent pathway analysis of the metabolites (21 metabolites with 
VIP score > 1.2) showed that Ala-Asp-Glu metabolism, Arg-Pro metabolism, and TCA cycle were most signifi-
cantly related to metabolic dysregulation in the 90% hepatectomy group (Fig. S2).

Biomarker discovery. To determine robust biomarkers that can predict the final outcome (survival or mor-
tality), we conducted binary logistic regression analysis of the 21 metabolites. Multivariate analysis suggested five 
models that showed statistical significance for all selected variables. The recommended variables were levels of 
malic acid, methionine, tryptophan, glucose, and γ-aminobutyric acid (GABA) (Fig. 4A). The stepwise receiver 

Figure 1. Serial changes of conventional biochemical markers (*P = 0.05, 70% vs. 90% liver resection, linear 
mixed model).
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operating characteristic (ROC) curve analysis showed good performance of the predictive models (Fig. S4). The 
area under the curve (AUC) of the linear combination of five metabolites was 0.993 (95% confidence interval: 
0.927–1.000, sensitivity: 100.0, specificity: 94.87) (Fig. 4B). The risk of mortality following hepatectomy was deter-
mined using the formula: −12.95*(Glucose) + 5.93*(Malic acid) + 2.46*(Methionine) − 7.57*(Tryptophan) − 
11.93*(GABA) − 7.34. We also tested the predictability of mortality at each time point. In contrast to the survival 
groups, the biomarker recomposite showed consistent discriminant power for the 90% hepatectomy group over 

Figure 2. Unsupervised multivariate analysis based on principal component analysis. The resultant score 
plot shows the following 3 distinctive clusters: all samples in the preoperative stage and for the 70% and 90% 
hepatectomy groups following partial hepatectomy.

Figure 3. Discriminant model for hepatectomy-associated mortality (90% hepatectomy group) based on 
orthogonal projection in latent structures-discriminant analysis (OPLS-DA). Multivariate statistical model by 
OPLS-DA showing the highest level of an explained variance and predictability in the 90% hepatectomy group 
in contrast to the survival groups, the sham operation and 70% hepatectomy groups.
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all stages following hepatectomy. The AUCs were 0.989, 0.978, and 1.000 at 14, 30, and 48 hours, respectively. 
Likewise, the temporal profiles of the linear recomposite showed significantly higher levels in the 90% hepatec-
tomy group for all time points (p < 0.001) (Fig. 4C). Further, we compared the predictive power of the biomarker 
panel to that of bilirubin, which is a conventional biochemical marker. ROC curve analysis showed the superi-
ority of the metabolite biomarker signature, particularly at the early time point of 14 hours (Fig. S4). Moreover, 
the ratio (90% hepatectomy group over the survival groups) showed more dramatic differences by the biomarker 
panel relative to conventional markers during all time points (Fig. 4D).

Discussion
The finding of an early biomarker means that liver failure prediction can be made, and the biomarker can be used 
to show the effects of management. Although there have been reports of positive effects of portal inflow modula-
tion such as the use of a somatostatin analogue or terlipressin and splenectomy after major liver resection, there 
is, to date, no definite treatment for liver failure besides liver transplantation3–5. The purpose of this study was to 
find liver failure biomarkers that can be identified earlier than the conventional liver biomarkers.

This study is the first to investigate metabolomic characterisation for mortality prediction following hepatec-
tomy using a pig model. Untargeted metabolic profiling systematically characterised metabolomic differences in 
blood serum according to remnant liver volume after resection. Further, we constructed a biomarker model of 
five serum metabolites that discriminated mortality after hepatectomy with high sensitivity and specificity over 
all time points under investigation.

The mechanism underlying liver failure after liver resection and dysfunction of small-size grafts is related to 
shear stress and sinusoidal injury1. Although efforts have been made to lower portal pressure and shear stress1,6–9, 
reports on biomarkers related to liver failure and dysfunction are currently inadequate. In clinical settings, the 
conventional markers of liver function include serum bilirubin, PT, AST, and ALT. AST and ALT are indicators of 
past injury, not indicators of present function. Even the combination of PT and total bilirubin, which are known 
as the most reliable predictive conventional markers, only has sensitivities of 14% and 19% on postoperative 
days 1 and 3, respectively2. The sensitivity increases to 59% on postoperative day 5. Additionally, clinical mani-
festations, such as ascites and neurological status, vary in the early postoperative period. Postoperative delirium, 
anaesthesia, and analgesia can affect neurological status, and intraoperative lymph node dissection and systemic 
volume status can affect the amount of ascites. Therefore, new biomarkers are needed for early detection, and we 
focused on liver metabolomes in this study10. To determine early biomarkers of liver failure, we used 70% and 
90% liver resection models. A 70% liver resection is within the limits of safe resection, while a 90% resection is 
associated with liver failure leading to death11,12. To determine the biomarkers with the capability to discriminate 
patients with failing livers and exclude those with liver regeneration and in recovery after resection, we compared 
the 70% resection model with the liver failure model. Further, we sought to determine biomarkers that do not dis-
criminate between the sham operation and 70% resection models. PT and ALT, which are conventional markers, 
were discriminative after 14 postoperative hours, while total bilirubin and AST did not distinguish between the 
70% and 90% resection groups at every time point. This pattern is consistent with that reported in another study, 

Figure 4. Performance evaluation of the biomarker panel (A) Line plots and statistical significance of the 
metabolites at each time point. Error bar indicates error of mean. (B) Receiver operating characteristic 
(ROC) curve analysis of serum metabolic biomarkers. The binary logistic regression model with malic acid, 
methionine, tryptophan, glucose, and γ-aminobutyric acid predicts the risk of hepatectomy lethality (90% 
hepatectomy from sham and 70% hepatectomy). (C) Line plots and statistical significance of the linearly 
transformed biomarkers. Error bar indicates error of mean. (D)The comparison of time profiles of the 
biomarker model and clinical markers. Y-axis is the ratio in which the values of 90% hepatectomy groups were 
divided by control groups (sham and 70% hepatectomy group).
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which showed that PT was the only discriminative parameter with a value of approximately 1.5 (INR) in the 90% 
liver resection model13. PT has also been used to predict liver failure in clinical settings. However, PT alone is not 
enough for liver failure prediction. Bilirubin level on postoperative day 5 can be used in conjunction with PT to 
better predict liver failure; however, this only increases the prediction sensitivity to 59%2.

Based on untargeted metabolic profiling using GC-TOF MS, we observed that the primary metabolic phys-
iology was clearly distinguishable according to the different volumes of remnant liver after hepatectomy. The 
profiles of all three groups prior to open surgery were analogous to that of the sham operation group postoper-
atively. Additionally, the 90% hepatectomy group was clearly distinguished from the other groups, whereas the 
70% hepatectomy and sham groups had similar profiles. This suggests that open surgery alone has minimal effect 
on the blood metabolic profiles, and primary metabolic physiology can clearly distinguish between the different 
remnant liver volumes after hepatectomy.

The metabolic physiology in the 90% hepatectomy group was best characterised by differential regulation in 
bioenergetics and amino acid metabolism that was systematically identified using an integrative multivariate sta-
tistical model. A previous study that used nuclear magnetic resonance spectroscopy reported that energy metabo-
lism was significantly downregulated by partial hepatectomy14, and this is consistent with our findings. The levels 
of two glycolysis intermediates, glucose and fructose-6-phosphate were lower in the 90% hepatectomy group than 
in the survival groups. In contrast, lactic acid level was significantly higher in the 90% hepatectomy group than in 
the survival groups, and it has been proposed that this is associated with acute and chronic hepatic insufficiency 
in patients15. There was also significant alteration of the TCA cycle, and this resulted in aberrant levels of citric 
acid, fumaric acid, and malic acid. It was recently reported that a significant decline in metabolite levels was found 
in the first half of the TCA cycle16. The OPLS-DA model revealed that the metabolites contributed most to the 
metabolic features of the 90% hepatectomy group.

We performed a binary logistic regression, which showed that the linear combination of five metabolites 
(malic acid, methionine, tryptophan, glucose, and GABA) sensitively predicted mortality following hepatectomy. 
The model discriminated the 90% hepatectomy group from the survival groups at all time points under inves-
tigation. GABA level gradually decreased and was lowest at the last time point in the 90% hepatectomy group 
(p > 0.08). In our study, we found that GABA level had a pattern that is opposite to that in previous studies that 
reported an inhibitory effect on hepatic regeneration following partial hepatectomy in rat models17,18. However, it 
has also been reported that GABA plays a protective role in acute liver injury19 and hepatotoxicity20. The metab-
olites need to be considered to play pivotal roles determining the liver regenerative capacity following partial 
hepatectomy in future investigations. In contrast, the difference in methionine levels gradually increased with 
time in the 90% hepatectomy group. A previous study reported that methionine-enriched diets instigated liver 
injury in cystathione-β-synthase-deficient mice as the consequent accumulation of homocysteine impaired liver 
regeneration after partial hepatectomy in a rat model21. Increase in methionine levels was noted in cases of severe 
liver failure in clinical settings, but not in cases of chronic active hepatitis22,23. Serum methionine concentrations 
greater than 200 μmol/L were found only in patients with severe liver failure, but not in patients with compen-
sated viral hepatitis23. Additionally, significantly higher methionine levels were observed concomitantly with 
signs of decompensation such as ascites, jaundice, and hepatic encephalopathy22. There are two possible mecha-
nisms underlying high levels of serum methionine in a failing liver. One is the disruption of the methionine cycle 
and the other is compensatory reactions to protect from further liver damage. The methionine cycle is one of the 
vulnerable cycles in liver disease, and methionine level varies depending on liver function and degree of compen-
sation. S-adenosylmethionine synthetase (SAMe) level is higher in the early stages of liver disease and leads to low 
methionine levels. However, SAMe level eventually decreases during the compensatory periods, and this in turn 
causes an increase in methionine levels during the liver failing process24. With regard to compensatory reactions 
after massive surgery, the level of 5-methylthioadenosine (MTA), which is a downstream derivative of SAMe, 
increases via increase in the SAMe level. MTA has the capacity to protect the liver by increasing glutathione level, 
improving membrane stability, and decreasing the activity of TNFα25,26. Consequently, higher MTA levels result 
in higher methionine levels. In a previous study, this process was found to occur more actively in the acutely 
failing liver, especially in the group that received a somatostatin analogue with protective effect on the remnant 
liver after liver resection27. Both mechanisms may occur concomitantly 48 hours after massive surgery. The exact 
cut-off level is yet to be determined, and further serial examinations will help in the prediction of prognosis and 
liver failure in such patients.

The kynurenine pathway for tryptophan catabolism mainly occurs in the liver; however, tryptophan level 
varies depending on liver function and availability of the rate-limiting enzyme (indoleamine 2,3-dioxygenase) 
induced by inflammatory response and kidney function28. A recent prospective study revealed that, in the 70% 
resection model with compensated liver function, serum tryptophan level increased with normal or mildly ele-
vated indoleamine 2,3-dioxygenase level29. Conversely, in the 90% resection model with decompensated liver 
function, tryptophan level decreased with increase in indoleamine 2,3-dioxygenase level induced by other organs 
such as the kidney29. Given the similar inflammatory states in the 70% and 90% resection models, it is unclear if 
compensation determines the tryptophan level26,27,29.

As described, high malic acid level is associated with TCA cycle disorders, and elevated levels of fumaric acid 
may lead to increased malic acid production. Urea cycle dysfunction is also associated with malic acid accumu-
lation as aspartic acid consumption is reduced30. The level of malic acid, unlike that of other TCA metabolites, is 
affected by the urea cycle. The compensatory action of high malic acid level may be due to fumaric acid, which 
generates oxaloacetate and aspartic acid to promote the transaminase process. However, in patients with urea 
cycle disorders, this may lead to malic acid accumulation.

This study is meaningful as liver biomarkers in patients with acutely failing livers differ compared to other 
metabolites which are determined using untargeted metabolic profiling. In the clinical setting, it should be con-
sidered that these metabolic markers (malic acid and methionine) may vary during the failing process because 
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of compensatory reactions. However, these markers can be monitored in patients with acute liver failure after 
hepatectomy at 48 postoperative hours. It should also be kept in mind that underlying diseases in a patient may 
affect the methionine cycle. In patients with hepatocellular carcinoma, the levels of glutamine, malic acid, and 
methionine may be elevated due to urea cycle disorders30. Furthermore, human hepatitis B-related liver cirrhosis 
leads to increase in urine and serum methionine levels31. We used a 90% hepatectomy model that leads to definite 
liver failure to find the biomarkers. However, there are limitations regarding determination of the exact cut-off 
level of the biomarkers in patients with marginal liver function in the clinical setting. Further study is needed to 
determine and validate cut-off levels of metabolomics biomarkers.

In summary, time-dependent profiling of serum metabolome characterized the metabolic features specific to 
mortality following hepatectomy. Primary dysregulation was identified in central carbon-nitrogen metabolism 
including glycolysis, TCA cycle, and amino acid metabolism. Systematic prioritization based on OPLS-DA and 
binary logistic regression analysis proposed robust biomarker panels that can accurately predict the risk of mor-
tality associated with hepatectomy.

Nevertheless, our data has some limitations including sample size. Biomarker study based on high-throughput 
molecular profiling (e.g., metabolomics) is conducted in an untargeted and hypothesis-free way32. This often 
limits sample size determination for appropriate statistical power. According to a univariate statistic (e.g., analysis 
of variance [ANOVA]), to meet a false discovery rate (FDR) of 0.2, the sample size of our study should be 80 per 
group.

Methods
Animals and study design. We used 2–3-month-old domestic female crossbred Yorkshire-landrace and 
Duroc pigs weighing 35–40 kg. Twenty pigs were divided into the following 3 groups: sham operation group 
(n = 6), 70% hepatectomy group (n = 7), and 90% hepatectomy group (n = 7). The 70% and 90% hepatectomies 
were performed as described by Hori et al.11 The pigs were fasted for 8 hours before surgery and housed in individ-
ual pens maintained at 22 ± 1 °C in ambient humidity. The animals were sacrificed 48 hours after the hepatectomy.

Liver resection and blood sampling. Liver resection was performed by board-certified 
hepato-biliary-pancreatic surgeons. Blood sampling was performed preoperatively and at 1, 6, 14, 30, 38, and 
48 hours after surgery through a central venous catheter inserted via the right jugular vein before laparotomy. 
Serial measurements of blood AST, ALT, total bilirubin, and metabolite levels and PT were performed.

Animal rights. This study was approved by the Korea University Institutional Animal Care and Use 
Committee (IRB: KOREA-2017–0069-C3), and all animals were cared for in accordance with the national guide-
lines for ethical animal research.

The research was also approved by the Governmental Committee on Animal Care; animals were cared for 
in compliance with institutional guidelines. Following the experimental protocol, the animals were sacrificed in 
deep anaesthesia using intravenous injection of potassium chloride (2 mmol/kg).

Primary metabolite profiling by gas chromatography time-of-flight mass spectrome-
try. Metabolite extraction, derivatisation, and mass spectrometry analysis were conducted in a randomized 
order. Serum samples were thawed on ice at 4 °C, and 50 µL was mixed with 750 µL of extraction solvent (metha-
nol:isopropanol:water, 3:3:2, v/v/v)33. Following 5 minutes of sonication and centrifugation, 700 µL of each super-
natant was aliquoted into a new 1.5 mL tube. The aliquots were concentrated to complete dryness using a speed 
vacuum concentrator (SCANVAC, Korea). The dried extracts were then stored at −80 °C until derivatization.

The dried extracts were derivatized with 5 µL of 40 mg/mL methoxyamine hydrochloride (Sigma-Aldrich, St. 
Louis, MO, USA) in pyridine (Thermo, USA) and with 45 µL of N-methyl-N-trimethylsilyltrifluoroacetamide 
(MSTFA + 1% TMCS; Thermo, USA)34. A mixture of 13 fatty acid methyl esters was added as an internal reten-
tion index marker (C8, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26, C28, and C30)35. Chromatographic 
separation was performed using Agilent 7890B gas chromatography (Agilent Technologies) equipped with an 
RTX-5Sil MS column (Restek, Gellefonte, PA, USA). Mass spectrometry analysis was performed on a LECO 
Pegasus HT time-of-flight mass spectrometer controlled by Chroma TOF software 4.50 version (LECO, St. 
Joseph, MI, USA)36.

Data processing and statistical analysis. The conventional biochemical markers evaluated in clinical 
settings (total bilirubin, AST, ALT, and PT) were compared using the linear mixed model and ANOVA at each 
time point with the Tukey-Kramer test for the adjustment for multiple comparisons.

Mass spectrometric data pre-processing was conducted using Chroma TOF software upon data acquisi-
tion. Peak apex mass values, entire spectrum values, retention time, peak purity, and signal-to-noise ratio were 
acquired. Post-processing was performed based on the BinBase algorithm, which includes chromatogram vali-
dation, primary RI detection and calculation, and quant mass validation37. Quantitative values were calculated 
based on the peak height of a single quant mass. Missing values replacement was performed based on the BinBase 
algorithm, which processes raw data for post-matching and replacement38. For quality control purposes, every 
tenth sample of a mixture of 33 pure reference compounds was analyzed, and this ensured reproducible perfor-
mance during the analysis39.

Metabolomic data were normalised based on the MSTUS method40 implemented in NOREVA (http://idrb.zju.
edu.cn/noreva/)41. The normalised data were then adjusted according to the preoperative metabolite levels, and 
line plots were drawn for the sham operation group and the 70% and 90% hepatectomy groups. PCA, OPLS-DA, 
and VIP analysis were performed using SIMCA 15 (Umetrics AB, Umea, Sweden). The OPLS-DA model was 
validated based on 2-, 3-, 4-, and 7-fold cross validation. Univariate statistical analysis was performed using the 
Student’s t-test (EXCEL, Microsoft Office 365). Significance analysis of microarray (SAM) was applied to control 
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the FDR. Binary logistic regression analysis (forward selection) was performed using IBM SPSS Statistics for 
Windows, version 25.0 (IBM Corp., Armonk, N.Y., USA). Kolmogorov-Smirnov and Shapiro-Wilk tests were 
conducted on the linearly transformed variables for normality check using IBM SPSS Statistics for Windows, 
version 25.0 (IBM Corp., Armonk, N.Y., USA). ROC analysis was performed using MedCalc for Windows, ver-
sion 12.7.0.0 (MedCalc Software, Ostend, Belgium). Pathway over-representation analysis was performed based 
on the hypergeometric test and relative-betweenness centrality implemented in MetaboAnalyst (https://www.
metaboanalyst.ca/).
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