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A B S T R A C T

Objectives: Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) are a serious public
health concern worldwide. The aim of this study was to characterise ESBL-EC isolated from raw retail
chicken in South Korea.
Methods: The antimicrobial resistance, phylogenetic group and virulence gene prevalence of 67 ESBL-EC
isolated from retail chicken in South Korea were investigated.
Results: All of the isolates possessed blaCTX-M genes, predominantly blaCTX-M-65 (52.2%) and blaCTX-M-55

(25.4%), and three isolates harboured both blaCTX-M-65 and blaCTX-M-55. More than one-half of the ESBL-EC
strains also carried blaTEM. Antimicrobial susceptibility testing revealed that 98.5% of the strains were
multidrug-resistant (MDR). Phylogenetic analysis showed that group A was predominant (56.7%),
followed by B1 (19.4%), E (8.9%), B2 (6.0%) and D (6.0%). Virulence genes associated with extraintestinal
pathogenic E. coli (ExPEC) were frequently detected in isolates of phylogenetic groups B1, B2, D and E.
Conclusion: The results in this study demonstrate that retail chicken in South Korea is highly
contaminated with MDR ESBL-EC and may serve as a reservoir for transmitting ExPEC to humans.
© 2019 The Authors. Published by Elsevier Ltd on behalf of International Society for Chemotherapy of

Infection and Cancer. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Extended-spectrum β-lactamases (ESBLs) are a group of
enzymes that hydrolyse most β-lactams, including penicillins,
cephalosporins and monobactams, but not carbapenems [1]. Since
ESBL genes are typically encoded on mobile genetic elements,
usually plasmids, these genes may be easily disseminated [2]. The
mobility of ESBL genes has resulted in a rapid increase in the
prevalence of ESBL-producing Enterobacteriaceae in food-produc-
ing and companion animals, environmental samples (e.g. waste-
water) and even food [3]. ESBL-producing Escherichia coli (ESBL-
EC) are frequently isolated from chicken meat [4–8]. In some cases,
the high prevalence of ESBL-EC hampers the isolation of other
fastidious bacteria (e.g. Campylobacter) from chicken as it outgrows
during the enrichment step using cephalosporins as a selective
supplement [9].
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Pathogenic E. coli are a major cause of not only enteric diseases
but also extraintestinal infections such as urinary tract infections
[10]. Although extraintestinal pathogenic E. coli (ExPEC) cause
infections outside the intestines, ExPEC first colonise the
gastrointestinal tract and are transmitted primarily by the
consumption of food, particularly chicken [11]. Commensal E. coli
isolates usually harbour no or only a very few virulence genes;
however, ExPEC possess a broad range of virulence genes involved
in bacterial adhesion, iron acquisition and serum survival as well as
toxins associated with extraintestinal disease [12]. ExPEC com-
monly possess large, transmissible, multidrug resistance plasmids
encoding ESBLs [13], suggesting that chicken could be a source
both for ExPEC and ESBL-EC.

A number of studies have shown that retail chicken is
significantly involved in transmitting ESBL-EC and ExPEC to
humans [4,13,14]. Despite its public health importance, the
prevalence of ESBL-EC on retail chicken in South Korea has
been reported in only a single study that characterised only a
limited number (n = 6) of ESBL-EC from retail chicken [15].
Furthermore, there is no study regarding ESBL-EC from
retail chicken, although they may have the potential to cause
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Table 1
Distribution of extended-spectrum β-lactamase (ESBL) types in ESBL-producing
Escherichia coli isolates (n = 67) from raw retail chicken in South Korea.

ESBL group ESBL type No. of strains

CTX-M group 1 CTX-M-55 2
CTX-M group 1, TEM CTX-M-55, TEM-1 6

CTX-M-55, TEM-116 6
CTX-M-15, TEM-1 1
CTX-M-15, TEM-135 1

CTX-M group 9 CTX-M-65 17
CTX-M-14 7
CTX-M-27 1

CTX-M group 9, TEM CTX-M-65, TEM-1 3
CTX-M-65, TEM-116 7
CTX-M-14, TEM-1 6
CTX-M-14, TEM-116 2

Miscellaneous CTX-M-55, CTX-M-65 2
CTX-M-65, OXA-1, TEM-1 5
CTX-M-55, CTX-M-65, OXA-1, TEM-1 1

Table 2
Antimicrobial resistance patterns of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates (n = 67) according to ESBL gene type.

Antimicrobial agent Resistance breakpoint (mg/mL) No. (%) of resistant strains

CTX-M (n = 29) CTX-M + TEM (n = 32) CTX-M + TEM + OXA (n = 6) Total (n = 67)

CIP �4 13 (44.8) 21 (65.6) 5 (83.3) 39 (58.2)
TET �16 26 (89.7) 23 (71.9) 6 (100) 55 (82.1)
CHL �32 19 (65.5) 25 (78.1) 6 (100) 50 (74.6)
KAN �64 6 (20.7) 8 (25.0) 4 (66.7) 18 (26.9)
GEN �16 12 (41.4) 17 (53.1) 3 (50.0) 32 (47.8)
STR �64 25 (86.2) 24 (75.0) 6 (100) 55 (82.1)
COL �8 2 (6.9) 0 0 2 (3.0)
AMP �32 29 (100) 32 (100) 6 (100) 67 (100)
CEF �32 29 (100) 32 (100) 6 (100) 67 (100)
CRO �4 29 (100) 32 (100) 6 (100) 67 (100)
CTX �4 29 (100) 32 (100) 6 (100) 67 (100)

CIP, ciprofloxacin; TET, tetracycline; CHL, chloramphenicol; KAN, kanamycin; GEN, gentamicin; STR, streptomycin; COL, colistin; AMP, ampicillin; CEF, cefalotin, CRO,
ceftriaxone; CTX, cefotaxime.
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extraintestinal infections in humans. To fill this important
knowledge gap, in this study the antimicrobial resistance and
virulence gene prevalence of ESBL-EC isolated from retail raw
chicken in South Korea were characterised.

2. Materials and methods

2.1. Collection of extended-spectrum β-lactamase-producing E. coli
from raw retail chicken in South Korea

A total of 67 ESBL-EC were isolated from 40 retail raw whole
chicken samples from 28 companies in six different provinces of
South Korea in our previous study (submitted). E. coli were grown
on MacConkey agar and were confirmed by 16S rRNA sequencing
(Macrogen, Seoul, South Korea). To confirm the ESBL phenotype,
the E. coli isolates were subjected to the modified ESBL
confirmatory test of the Clinical and Laboratory Standards Institute
(CLSI), which uses antimicrobial disks of cefotaxime and
ceftazidime with or without the ESBL inhibitor clavulanic acid,
and boric acid and ethylene diamine tetra-acetic acid (EDTA) to
inhibit AmpC β-lactamases and carbapenemases, respectively [16].
E. coli ATCC 25922, a CLSI quality control strain, was used as a
negative control. The presence of ESBL genes (blaSHV, blaTEM,
blaCTX-M and blaOXA) was determined by PCR using previously
described primers [17]. PCR amplicons were sequenced and the
translated amino acid sequences were used to determine the ESBL
gene type [18–20]. The E. coli isolates were routinely cultured on
Luria–Bertani medium.

2.2. Antimicrobial susceptibility testing

Antimicrobial susceptibility of the isolates was determined by
the broth dilution method using a total of 11 antibiotics, including
ampicillin, cefalotin, tetracycline, chloramphenicol, kanamycin,
gentamicin, streptomycin, colistin, ceftriaxone, cefotaxime
and ciprofloxacin. Minimum inhibitory concentrations (MICs)
were determined according to CLSI guidelines and previous
reports [21–23]. E. coli ATCC 25922 was used as a quality control
strain according to the CLSI protocol.

2.3. Phylogenetic analysis of extended-spectrum β-lactamase-
producing E. coli

The phylogenetic group of the ESBL-EC isolates was determined
using a quadruplex PCR-based method amplifying chuA, yjaA, DNA
fragment TspE4C2 and arpA [24]. E. coli strains MG1655 and ATCC
25922 were used as controls for phylogenetic groups A and B2,
respectively.
2.4. Random amplified polymorphic DNA (RAPD) analysis

RAPD analysis was used as a PCR-based DNA fingerprinting
method to analyse clonal similarity of the isolates. DNA extracted
from the 67 E. coli isolates was subjected to PCR using previously
reported primers [25] and the PCR results were analysed using
BioNumerics v.7 software (Applied Maths, Sint-Martens-Latem,
Belgium).

2.5. Detection of virulence genes associated with pathogenic E. coli

PCR was performed to analyse the presence of virulence genes
associated with five major intestinal pathogenic E. coli groups,
including Shiga toxin-producing E. coli (STEC) (stx1 and stx2
encoding Shiga toxins 1 and 2, hylA encoding enterohaemolysin
and espP encoding serine protease), enteropathogenic E. coli (EPEC)
(eaeA encoding intimin), enterotoxigenic E. coli (ETEC) (st and lt
encoding heat-stable and heat-labile enterotoxins) and enter-
oaggregative E. coli (EAEC) (aggR encoding a transcription regulator
for aggregative adherence fimbria I) and ExPEC [26,27]. The tested
virulence genes related to ExPEC included extraintestinal E. coli
attachment factors (fimH and iha), iron uptake factors (aer, irp2 and
iutA), iron transporter (feoB), increased serum survival protein (iss)
and heat-stable enterotoxin (astA) [28–30]. E. coli ATCC 35150 was
used as a positive control for STEC and EPEC. E. coli NCCT 14039 was
a positive control for EAEC. E. coli MG1655 was used as a negative
control for the tested virulence genes except for fimH and feoB. E.
coli strains ATCC 43888 and O169 were used as positive controls for
iha and astA, respectively. E. coli strains MG1655 and ATCC 25922



Table 3
Phylogenetic group of extended-spectrum β-lactamase (ESBL)-producing Escher-
ichia coli isolates (n = 67) from raw retail chicken in South Korea.

Phylogenetic group No. (%) of strains

A 38 (56.7)
B1 13 (19.4)
B2 4 (6.0)
D 4 (6.0)
E 6 (9.0)
F 1 (1.5)
Unknown 1 (1.5)
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were used as positive and negative controls, respectively, for fimH
and feoB.

2.6. Statistical analysis

The statistical significance of the distribution of virulence genes
was analysed by χ2 test using GraphPad Prism software v.5
(GraphPad Software Inc., La Jolla, CA).

3. Results

3.1. Distribution of extended-spectrum β-lactamase genes in E. coli
from raw retail chicken

All of the ESBL-EC strains from retail poultry possessed blaCTX-M
(Table 1), suggesting that CTX-M is the predominant ESBL type in E.
coli from retail chicken in South Korea. More than one-half (56.7%;
38/67) of the blaCTX-M-positive strains also carried blaTEM and/or
blaOXA, whereas blaSHV was not detected (Table 1). The dominant
CTX-M types included CTX-M-65 (52.2%; 35/67) in the CTX-M
group 9 and CTX-M-55 (25.4%; 17/67) in the CTX-M group 1; three
strains harboured both blaCTX-M-65 and blaCTX-M-55 (Table 1). The
blaOXA-1 gene was detected in six (9.0%) of the 67 ESBL-EC strains,
and the blaOXA-1-positive strains also harboured blaTEM-1 and
blaCTX-M–65 and/or blaCTX-M-55 (Table 1).
Table 4
Prevalence of virulence genes of extended-spectrum β-lactamase (ESBL)-producing Esc

Pathogenetic
group

Virulence
gene

No. (%) of strains

Group A
(n = 38)

Group B1
(n = 13)

Group B2
(n = 4)

ExPEC astA 3 (7.9) 5 (38.5)* 1 (25.0) 

iss 27 (71.1) 9 (69.2) 3 (75.0) 

fimH 21 (55.3) 13 (100)** 4 (100) 

aer 22 (57.9) 10 (76.9) 4 (100) 

irp2 3 (7.9) 7 (53.8)*** 3 (75.0)***

iha 1 (2.6) 3 (23.1)* 0 

iutA 21 (55.3) 10 (76.9) 4 (100) 

feoB 38 (100) 13 (100) 4 (100) 

STEC stx1 0 0 0 

stx2 0 0 0 

hylA 0 0 0 

espP 0 1 (7.7) 0 

EPEC eaeA 5 (13.2) 0 0 

ETEC st 0 0 0 

lt 0 0 0 

EAEC aggR 0 0 0 

ExPEC, extraintestinal pathogenic E. coli; STEC, Shiga toxin-producing E. coli; EPEC, ent
* P < 0.05, distribution in indicated group versus group A.
** P < 0.01, distribution in indicated group versus group A.
*** P < 0.001, distribution in indicated group versus group A.
3.2. Antimicrobial susceptibility of extended-spectrum β-lactamase-
producing E. coli from raw retail chicken

Strains harbouring all of the blaCTX-M, blaTEM and blaOXA genes
were highly resistant to all tested antibiotics except for colistin
(Table 2). Antimicrobial susceptibility testing showed that 98.5%
(66/67) of the tested ESBL-EC isolates were resistant to at least
three antibiotic classes tested in this study, suggesting that ESBL-
EC from retail chicken in South Korea is highly multidrug-resistant
(MDR).

3.3. Phylogenetic group analysis of extended-spectrum β-lactamase-
producing E. coli from raw retail chicken

The predominant phylogenetic groups of the ESBL-EC isolates
from retail chicken were group A (56.7%) and group B1 (19.4%).
Four E. coli isolates each belonged to groups B2 and D, respectively.
Eight strains were classified as minor group, of which six belonged
to group E, one to group F and one strain was unknown (Table 3).
Phylogenetic analysis using RAPD-PCR showed that ESBL-EC
isolates belonging to the same phylogenetic group tended to form
the same cluster (Supplementary Fig. S1).

3.4. Prevalence of virulence genes in extended-spectrum β-lactamase-
producing E. coli from raw retail chicken

The prevalence of virulence genes representing the five major
pathogenic groups of E. coli, including ETEC, EPEC, EAEC, STEC and
ExPEC, was examined. The espP genes was detected and in one
strain in group B1 and the eaeA gene was detected five strains in
group A, whereas toxin genes were not detected. Interestingly, all
67 ESBL-EC isolates carried at least one ExPEC-related virulence
gene. Compared with group A, the prevalence of ExPEC-related
virulence genes was more frequent in groups B1, B2, D and E
(Table 4), and those harbouring at least six ExPEC-related virulence
genes belonged to phylogenetic groups B1, B2, D and E with
statistical significance (Table 5).
herichia coli isolates according to phylogenetic group.

Group D
(n = 4)

Group E
(n = 6)

Group F
(n = 1)

Unknown
(n = 1)

Total (n = 67)

4 (100)*** 3 (50.0)** 0 0 16 (23.9)
2 (50.0) 6 (100) 1 (100) 1 (100) 49 (73.1)
4 (100) 6 (100)* 1 (100) 1 (100) 50 (74.6)
4 (100) 6 (100)* 1 (100) 1 (100) 48 (71.6)
1 (25.0) 0 0 0 14 (20.9)
0 0 0 0 4 (6.0)
4 (100) 6 (100)* 1 (100) 1 (100) 47 (70.1)
4 (100) 6 (100) 1 (100) 1 (100) 67 (100)
0 0 0 1 (100) 1 (100)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1 (1.5)
0 0 0 0 5 (7.5)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

eropathogenic E. coli; ETEC, enterotoxigenic E. coli; EAEC, enteroaggregative E. coli.



Table 5
Distribution of extended-spectrum β-lactamase-producing Escherichia coli isolates in phylogenetic groups according to the number of virulence genes.

Phylogenetic group No. (%) of virulence genes

7 6 5 4 3 2 1

Group A (n = 38) 0 0 7 (18.4) 15 (39.5) 11 (28.9) 3 (7.9) 2 (5.3)
Group B1 (n = 13) 3 (23.1)** 5 (38.5)*** 2 (15.4) 0** 3 (23.1) 0 0
Group B2 (n = 4) 1 (2.5)** 1 (2.5)** 2 (50) 0 0 0 0
Group D (n = 4) 1 (2.5)** 1 (2.5)** 2 (50) 0 0 0 0
Group E (n = 6) 0 3 (50)*** 3 (50) 0 0 0 0
Group F (n = 1) 0 0 1 (100)* 0 0 0 0
Unknown (n = 1) 0 0 1 (100)* 0 0 0 0

* P < 0.05, distribution in indicated group versus group A.
** P < 0.01, distribution in indicated group versus group A.
*** P <0.001, distribution in indicated group versus group A.
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4. Discussion

ESBL-EC are frequently isolated from poultry [6], and retail
chicken is considered as an important vehicle transmitting
ESBL-EC to humans [5]. In this study, ESBL-EC isolates from
retail chicken in South Korea were extensively characterised.
Consistent with the global expansion of CTX-M ESBLs [31], CTX-
M was the predominant ESBL type in E. coli strains from retail
chicken in South Korea. In this study, blaCTX-M-65 (52.2%), blaCTX-M-

55 (25.4%) and blaCTX-M-14 (22.4%) were the most common ESBL
genes. Similarly, blaCTX-M-55, blaCTX-M-65 and blaCTX-M-14 were
commonly detected in ESBL-EC from chicken in China [32]. In
Japan, blaCTX-M-2, blaTEM and blaCTX-M-1 were present in 45%, 36%
and 34% of ESBL-EC isolates from domestic retail chicken meat
samples, respectively [7]. In the Netherlands, among 87 strains of
ESBL-EC from chicken meat, 69% harboured blaCTX-M-1 [33].
Similarly, 65.4% of chicken meat samples in the UK were
contaminated with ESBL-EC, and blaCTX-M-1 was predominant
(82.7%) [34]. Based on the findings in this and other studies, ESBL-
EC are highly prevalent on retail chicken in most countries,
however the dominant ESBL gene types are different depending on
the geographic region.

All of the ESBL-EC isolates from retail chicken in the current
study were resistant to multiple drugs belonging to different
classes, such as ampicillin, tetracycline, chloramphenicol and
streptomycin (Table 2). A high prevalence of MDR ESBL-EC has
been reported previously. In China, 96.9% of ESBL-EC isolated
from chickens were resistant to at least three different
antimicrobial classes [35]. MDR strains are highly
distributed in clinical as well as chicken samples. For instance,
all of the ESBL-EC isolated from hospitals in India were MDR
[36]. In the current study, two strains were resistant to colistin,
an antibiotic of last-resort (Table 2). Further investigation
found that the strains were positive for mcr-1 (data not shown),
the plasmid-encoded gene conferring resistance to colistin [37].
This observation may be explained by the fact that ESBL genes
are usually encoded on transmissible plasmids harbouring
multiple resistance genes [38]. Strains carrying three different
ESBL genes (i.e. blaCTX-M, blaTEM and blaOXA) exhibited increased
antimicrobial resistance compared with those harbouring fewer
ESBL genes, although this was not statistically significant owing to
the small number of strains (n = 6) (Table 2). Presumably, the co-
existence of different ESBL genes may result from the co-presence
of multiple resistance plasmids in the same strain. For instance, it
has been demonstrated that plasmid-mediated quinolone resis-
tance genes are frequently detected in ESBL-EC isolates from
poultry [39].

Virulent ExPEC usually belong to phylogenetic groups B2 and D
[40,41]. However, in the current study ESBL-EC isolated from retail
chicken mainly belonged to groups A (56.7%) and B1 (19.4%), and
only four strains were assigned to each of groups B2 and D
(Table 3). Interestingly, the number of strains in group E, which is
classified as a minor group, was larger than those belonging to
groups B2 and D (Table 3). E. coli O157:H7 EDL933 is the best-
known member belonging to group E [24]. Consistently, a previous
study in Jeonnam Province in South Korea showed that the
majority of E. coli isolates from chicken were limited to
phylogenetic group A, followed by group B1, and no isolate
belonged to group B2 [42]. A similar pattern of distribution was
also found among isolates from chicken carcasses in China [43]. In
contrast, E. coli isolates from chicken meat had the greatest
percentage of group B1 strains (44%), followed by groups A (28%)
and D (23%) in the Netherland [33]. Among E. coli isolates from
chicken meat in the USA, groups D, B2, A and B1 were dominant in
that order [44]. Thus, the distribution of phylogenetic groups may
be affected by their geographical region. However, the prevalence
of strains belonging to group E in the current study was similar to a
previous report from the Netherland [33]. Whereas the isolates
harboured no or only very few virulence factors related to
gastrointestinal infection, various virulence factors associated
with ExPEC were frequently detected in ESBL-EC isolates,
particularly in those belonging to groups B1, B2, D and E, but
not to group A (Tables 4 and 5). These results suggest that ESBL-EC
isolates in groups B1, B2, D and E from retail chicken may
potentially be implicated in extraintestinal infections in humans in
South Korea.

The findings of this study demonstrate that raw retail chicken in
South Korea could be a major source of disseminating ESBL-EC
with great potential to cause extraintestinal infections. Since ESBL-
EC from chicken are often MDR, further investigation is required to
control and reduce the contamination of chicken meat by ESBL-EC
to protect public health.
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