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A B S T R A C T

Salsa is a liquid-solid food containing jalapeño and serrano peppers, which result in multistate outbreak in 2008.
Storage temperature and sodium chloride (NaCl) concentration of salsa vary depending on the climate, season,
and type of product. In this regard, effect of growth conditions, namely, low temperature (15 °C) or NaCl con-
centration (4.5%) on the resistance of Escherichia coli O157:H7 ATCC 35150 to ohmic heating was identified in
this study. Cells of E. coli O157:H7 ATCC 35150 grown under different growth conditions was inoculated into
prepared salsa sample, and then subjected to ohmic heating. Mechanisms of resistance acquisition were iden-
tified by transcriptional responses, membrane fatty acid changes and confirmed with propidium iodide (PI)
uptake values. Resistance of the pathogen to ohmic heating decreased when growth temperature decreased from
37 °C to 15 °C while increased resistance was observed for this pathogen when grown with 4.5% NaCl. Several
heat stress related genes such as dnaK, rpoH, grpE, groES, htpG, and htpX were up-regulated (≥5 fold change) as
growth temperature decreasedwhile groEL, dnaK, rpoH were up-regulated when grown with high NaCl con-
centration in the present study. The ratio of unsaturated fatty acids (USFA) to saturated fatty acids (SFA) of
pathogen increased slightly (+0.16) or significantly (+0.79) with increasing NaCl concentration or decreasing
temperature, respectively. These results indicate that the cell membrane of the pathogen grown at low tem-
perature was more susceptible to heat than when grown under optimal conditions or high NaCl concentration.
Cell membrane damage measured by PI uptake values of the pathogen grown with high NaCl concentration were
not significantly different from those of the control (p > 0.05), while the values were significantly higher for the
pathogen grown at low temperature and subjected to ohmic heating (p < 0.05). Based on these results we
suggest that resistance of the pathogen grown at low temperature to ohmic heating decreased because of
dominant cell membrane damage compared to induced heat stress related genes. The cell membrane damage
was dominant by means of an increased ratio of USFA to SFA. On the other hand, pathogen resistance increased
when grown in medium of high NaCl concentration because of induced heat stress related genes.

1. Introduction

Biological hazards are one of the major causes of outbreaks invol-
ving food products. A variety of pathogens causing foodborne outbreaks
have been reported such as Escherichia coli (E. coli) O157:H7, Salmonella
Typhimurium (S. Typhimurium), Listeria monocytogenes (L. mono-
cytogenes), and Campylobacter jejuni (Jayasena et al., 2015). In parti-
cular, E. coli O157:H7 may cause hemolytic uremic syndrome with low

infective dose (Yang et al., 2013). Thermal treatments have been used
widely to control pathogens in foods. Foodborne pathogens subjected to
high temperature are easily inactivated because several essential pro-
teins are denatured which contribute to cell death (Nguyen, Corry, &
Miles, 2006). However, high temperature thermal treatments could
cause food quality losses, and consequently several novel thermal
technologies have been introduced to reduce treatment time and tem-
perature. The novel thermal technologies affect food quality to a lesser
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extent by means of rapid and volumetric heating. For example, near-
infrared (NIR) heating has been used to control pathogens in ready-to-
eat sliced ham as an alternative to convective heating (Ha, Ryu, & Kang,
2012), but only the food surface can be heated by NIR heating. Radio
frequency heating and microwave heating also have been used to secure
biological safety in food products (Jeong & Kang, 2014; Song & Kang,
2016) even though solid-liquid food is heated non-uniformly by these
treatments due to different dielectric properties. Alternatively, food
samples can be heated more uniformly by ohmic heating as reported in
our previous study (Kim et al., 2016).

Ohmic heating is a novel technology generating heat inside of food
using electric current. Electrode corrosion has been a major obstacle
when ohmic heating is used for food processing (Pataro et al., 2014). To
solve this problem, high frequency or pulse waveforms have been in-
troduced (Kim, Choi, & Kang, 2017; Lee, Ryu, & Kang, 2013). There-
fore, research investigations studying inactivation of foodborne pa-
thogens by ohmic heating without incurring electrode corrosion have
been reported recently (Lee, Kim, & Kang, 2015). Even though thermal
inactivation is the principal mechanism of pathogen decontamination
by ohmic heating, a non-thermal effect has also been reported (Park &
Kang, 2013). Irreversible pore formation at high temperature by the
ohmic heating electric field was observed and reductions of pathogens
such as E. coli O157:H7, S. Typhimurium, and L. monocytogenes can be
accelerated by ohmic heating compared to conventional heating.
Moreover, ohmic heating can be used effectively to process solid-liquid
samples compared to conventional heating. Solid ingredients are
usually heated more slowly than the liquid phase by conventional
heating because heat transfer is implemented with conduction and
convection. On the other hand, solid and liquid components can be
heated simultaneously by ohmic heating. Several research investiga-
tions reported that liquid-solid foods such as salsa can be processed
effectively by ohmic heating (Kim & Kang, 2017a,b; Lee et al., 2013).

Salsa is a liquid-solid food containing jalapeño and serrano peppers
(Castro-Rosas et al., 2011). A multistate outbreak in the United States
involving more than 1,400 cases was reported in 2008, in which jala-
peño and serrano peppers were identified as vehicles of pathogen
(Mody et al., 2011). Ma, Zhang, Gerner-Smidt, Tauxe, and Doyle (2010)
reported that pathogen can grow in chopped tomatoes, jalapeño pep-
pers, and cilantro when held at 12 °C and above. Because jalapeño and
serrano peppers are usually consumed raw in green salads or salsa,
adequate decontamination procedures to inactivate bacterial pathogens
in salsa is required. Salsa is usually held at room temperature, which
varies depending on climate and season, and also has diverse sodium
chloride (NaCl) concentration according to the types of product such as
hot, medium, chunky, and so forth. Meanwhile, many research studies
reported that different environmental conditions can cause many ela-
borate stress responses in bacterial pathogens (Bergholz, Bowen,
Wiedmann, & Boor, 2012; Kim & Rhee, 2016; Lim & Hammer, 2015;
Zhang & Griffiths, 2003). The stress response can result in variable
bacterial pathogen resistance to thermal (Kim & Rhee, 2016) or non-
thermal (Lee, Kim, & Kang, 2019) bactericidal treatments.

Ohmic heating is an efficient technology for inactivating foodborne
pathogens in salsa, but to the best of our knowledge, research in-
vestigations related to the resistance of foodborne pathogens to ohmic
heating grown under different conditions have been limited. In the
present study, we investigated the resistances of E. coli O157:H7 ATCC
35150 grown under at extreme conditions (4.5% NaCl or 15 °C) to
ohmic heating. First, ohmic heating reduction of E. coli O157:H7 ATCC
35150 by ohmic heating grown under different conditions was com-
pared in salsa. Secondly, relative expression of heat stress related genes
and membrane lipid composition changes were observed to identify the
mechanism of the resistance acquisition. Finally, the propidium iodide
uptake test was accomplished to verify cell membrane damage resulting
from ohmic heating.

2. Materials and methods

2.1. Bacterial cultures and cell suspension

E. coli O157:H7 ATCC 35150 (American Type Culture Collection,
Rockville, MD) was obtained from the bacteria culture collection of
Seoul National University (Seoul, South Korea). A single colony culti-
vated from frozen stock on tryptic soy agar (TSA; Difco, Becton,
Dickinson, Sparks, MD) was inoculated into 5ml of tryptic soy broth
(TSB; Difco, Becton, Dickinson, Sparks, MD) and incubated in a shaking
incubator at 37 °C and 250 rpm for 24 h. To approximate a population
of ca. 106 CFU/ml of cell suspension in 50ml TSB, optical density at
600 nm of the cell suspension was determined with a spectro-
fluorophotometer (Spectramax M2e; Molecular Devices, Sunnyvale,
CA) and adjusted to 0.1 with 50ml TSB amended with 0.5 or 4.5%
NaCl. These cell suspensions were incubated under following three
growth conditions; 37 °C with 0.5% NaCl (E-control), 15 °C with 0.5%
NaCl (E-15 °C), or 37 °C with 4.5% NaCl (E-NaCl).

2.2. Growth kinetics of pathogen

The growth aspect of E. coli O157:H7 ATCC 35150 was determined
by withdrawing 1ml of samples at appropriate time intervals. Sampling
times intervals were 0.3–1, 2–3, and 3–3.5 h for E-control, E-NaCl, and
E-15 °C, respectively. Populations of viable cells were enumerated by
plating each sample onto Sorbitol MacConkey (SMAC) agar (Difco).
Populations were plotted against time and analyzed by the modified
Gompertz equation using GraphPad PRISM (GraphPad Software, Inc.,
San Diego, CA, USA) as described by (Cho, Lee, Lim, Kwak, & Hwang,
2011; Zwietering, Jongenburger, Rombouts, & Van't Riet, 1990).

N=N0+C(exp(-exp((2.718*u/C)*(M-X)+1))

Where N (log10 CFU/ml) is the population of bacteria at time X, N0

(log10 CFU/ml) is the initial population, C (log10 CFU/ml) is the dif-
ference between initial and final cell numbers, u (log10 CFU/h) is the
maximum specific growth rate, M (h) is the lag time, and X (h) is the
growth time.

2.3. Sample preparation and inoculation

Pasteurized salsa (pH 3.7), purchased at a local grocery store (Seoul,
South Korea) and stored at room temperature (22 ± 1 °C), was used in
this experiment. The salsa contained no chemical preservatives and
included tomatoes, jalapeño peppers, onions, garlic, and distilled vi-
negar. Fifty grams of each sample were put into the ohmic heating
chamber.

Cells of E. coli O157:H7 ATCC 35150 grown to early stationary
phase under the three different growth conditions were collected by
centrifugation at 4,000×g for 20min at 4 °C. Pellets were resuspended
in 9ml of 0.2% peptone water (PW; Bacto, Becton, Dickinson, Sparks,
MD), and the suspended pellets contained 109−10 CFU/ml numbers of
cells. The cell suspension was inoculated into each prepared sample
before treatment. The volume of inoculum was adjusted to attain a final
bacterial population of 106–107 CFU/g.

2.4. Ohmic heating treatment

Inoculated samples were subjected to pulsed ohmic heating (0.05
duty ratio, 500 Hz) with fixed electric strength (7.0 Vrms/cm). Ohmic
heating treatments were carried out in a previous described apparatus
(Kim & Kang, 2017a). The ohmic heating system consisted of a function
generator (catalog number 33210A; Agilent Technologies, Palo Alto,
CA), a precision power amplifier (catalog number 4510; NF Corp.,
Yokohama, Japan), a two-channel digital-storage oscilloscope (catalog
number TDS2001C; Tektronix, Inc., Beaverton, CO), a data logger
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(catalog number 34970A; Agilent Technologies), and an ohmic heating
chamber. The function generator produced various waveforms at fre-
quencies from 1mHz to 10MHz and a maximum output level of 5 V.
The signals generated through the power amplifier were amplified up to
a maximum output of 141 V alternating current (AC) by the power
amplifier. The expanded signals were delivered to each of two titanium
electrodes. The two-channel digital storage oscilloscope was used to
measure signals, including waveform, frequency, voltage, and current.
K-type thermocouples were inserted at the center of the ohmic heating
chamber and temperatures were recorded at 0.6-s intervals by a data
logger. The distance between the two electrodes was 4 cm, and the
cross-sectional area was 60 cm2. Temperature increase of buffered
peptone water and salsa subjected to ohmic heating was observed
(Fig. 1). Samples were taken after each treatment and populations of
surviving microorganisms were enumerated.

2.5. Bacterial enumeration

For microbial enumeration, each treated 50ml sample was im-
mediately transferred into a sterile stomacher bag (Labplas, Inc., Sainte-
Julie, Quebec, Canada) containing 100ml of sterile 0.2% PW and
homogenized for 2min using a stomacher (Easy Mix; AES Chemunex,
Rennes, France). After homogenization, 1ml samples were 10-fold se-
rially diluted with 9ml of sterile 0.2% PW and 0.1 ml of stomached or
diluted samples were spread plated onto Sorbitol MacConkey (SMAC)
agar (Difco). All plates were incubated at 37 °C for 24 h before counting
colonies characteristic of the pathogen. Phenol red agar base with 1%
sorbitol (SPRAB; Difco) was used to recover injured cells of E. coli
O157:H7 (Lee and Baek, 2008). After incubation at 37 °C for 24 h, ty-
pical white colonies characteristic of E. coli O157:H7 were enumerated.
Randomly selected isolates from SPRAB plates were subjected to ser-
ological confirmation as E. coli O157:H7 (RIM, E. coli O157:H7 latex
agglutination test; Remel, Lenexa, KS), because SPRAB is not typically
used as a selective agar for enumerating E. coli O157:H7.

2.6. RNA extraction and real-time RT-PCR analysis

One ml of E. coli O157:H7 ATCC 35150 grown under the three
different conditions was collected by centrifugation at 4,000×g for
20min at 4 °C. Supernatants were discarded, and the cell pellets were
resuspended in 1ml phosphate-buffered saline (PBS; Corning, pH 7.4).
Total RNA was extracted in centrifuge tube using the miRNeasy Mini
Kit (Qiagen Inc., Hilden, Germany) according to the manufacturer's
protocol. Extracted total RNA was subjected to reverse transcription
using QuantiTect Reverse Transcription Kit (Qiagen Inc.).

Real-time reverse transcription polymerase chain reaction (real-

time RT-PCR) was performed using a Real-time PCR thermocycler
(Exicycler 96 Real-Time Quantitative Thermal Block; Bioneer, Dae-
jeon, Korea) with conditions comprised of pretreatment at 50 °C for
2min and initial denaturation at 95 °C for 10min and 40 cycles of
denaturation, annealing, and extension at 95 °C for 15 s, 63 °C for 1min,
and 72 °C for 30 s, respectively. Primers used in the present study are
listed in Table S1. Relative expression was assayed with each 25 μl re-
action mixture containing 12.5 μl of SYBR Select Master Mix (Applied
Biosystems, Carlsbad, CA, USA), 2.5 μl of 0.2 μM of each primer, 2 μl of
reverse-transcribed cDNA, and 5.5 μl of diethyl pyrocarbonate (DEPC)
treated water. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as the reference gene. Relative gene expression levels were
determined using the −△△2 CT method (Livak & Schmittgen, 2001).
Gene expressions of E-control were used as a control.

2.7. Membrane lipid composition

Membrane fatty acid profiles of E. coli O157:H7 ATCC 35150 grown
under the three growth conditions were analyzed. The cells were col-
lected by centrifugation at 4,000×g for 20min at 4 °C after incubation
to early stationary phase. Each pellet was subjected to fatty acid ex-
traction as described in MIDI Technical note no. 101 (7). Mixtures of
hexane and methyl tert-butyl ether were used to extract the fatty acid
methyl esters (FAMEs). FAMEs in the upper phase were analyzed with
an Agilent gas chromatograph (model 7890A, Agilent Technologies,
Santa Clara, CA, USA) equipped with a split-capillary injector and a
flame ionization detector (Garcés & Mancha, 1993). Separations were
obtained using a DB-23 column (60mm×0.25mm I. d., 0.25 μm,
Agilent Technologies). The injector temperature was set at 250 °C, the
column oven at 50 °C for 1min, followed by an increase at a rate of
15 °C/min to 130 °C, 8 °C/min to 170 °C, and 2 °C/min to 215 °C, which
was held for 10min. Hydrogen, air, and helium were used as the carrier
gas, and the flow rate was set to 35ml/min, 350ml/min, and 35ml/
min, respectively. The detector temperature was held at 280 °C. Supelco
37 component FAME mix (Supelco, Inc., PA, USA) was used for ana-
lyzing fatty acid profiles. Relative contents (%) of total saturated fatty
acid (SFA) and unsaturated fatty acid (USFA) were represented and
ratios were calculated by dividing the relative content of USFA to SFA
(USFA/SFA).

2.8. Propidium iodide uptake test

The fluorescent dye propidium iodide (PI; Sigma-Aldrich, P4170)
was used to determine cell membrane damage. The PI uptake test was
conducted using a slight modification of the method described pre-
viously (Kim & Kang, 2017a). Inoculated buffered peptone water
(Difco, Sparks, MD, pH 7.2) was subjected to pulsed ohmic heating
(0.05 duty ratio, 500 Hz) with fixed electric strength (13.4 Vrms/cm).
Untreated and treated buffered peptone water were centrifuged at
10,000×g for 10min. Supernatants were discarded, and the cell pellets
were resuspended in 1ml PBS (Corning, pH 7.4) to an optical density at
680 nm of approximately 0.1 with a spectrofluorophotometer (Spec-
tramax M2e; CA). PI was added to a final concentration of 2.9 μM and
incubated for 10min. After incubation, samples were centrifuged under
the same conditions. The final cell pellets were resuspended in 1ml PBS
and fluorescence was measured with the spectrofluorophotometer at an
excitation wavelength of 493 nm and an emission wavelength of
630 nm. Fluorescence data obtained for untreated cells were subtracted
from all treated values and then normalized for OD680.

PI value = (fluorescence value of treated cells – fluorescence value of
untreated cells)/(OD680*10)

Fig. 1. Temperature history of salsa and buffered peptone water (BPW) sub-
jected to ohmic heating.
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2.9. Statistical analysis

All experiments were replicated three times. Membrane fatty acid
and PI uptake data were analyzed by the analysis of variance procedure
of the Statistical Analysis System (version 9.3, SAS Institute, Cary, NC)
and mean values were separated using Duncan's multiple-range test.
Significant differences in the processing treatments were determined at
a significance level of α=0.05.

3. Results

3.1. Growth kinetics of E. coli O157:H7 ATCC 35150 cultured under
different conditions

Growth conditions of low temperature or high NaCl concentration
influenced the growth kinetics of E. coli O157:H7 ATCC 35150 (Table
S2). The difference between initial and final cell numbers (C) decreased
with added NaCl or decreased growth temperature. C values
(log10 CFU/ml) were 3.12, 1.91, and 2.52 for E-control, E-NaCl, and E-
15 °C, respectively. Increasing NaCl concentration did not influence the
maximum specific growth rate value (u) while this value decreased
with decreasing temperature. The u values (log10 CFU/h) were 1.14,
1.29, and 0.17 for E-control, E-NaCl, and E-15 °C, respectively. Lag time
(M) increased with added NaCl or decreasing temperature. The M va-
lues (h) were 0.51, 3.09, and 14.3 for E-control, E-NaCl, and E-15 °C,
respectively.

3.2. Reduction of E. coli O157:H7 ATCC 35150 grown under different
conditions

Growth conditions had a significant effect on the inactivation of E.
coli O157:H7 ATCC 35150 by ohmic heating in salsa (Fig. 2). Reduction
levels increased as treatment time increased regardless of growth con-
ditions and enumeration media. When enumerated on selective media
(Fig. 2A), reduction levels (log CFU/g) of E-15 °C were not significantly
different (p > 0.05) from those of E-control while reduction levels of E-
NaCl were lower than E-control after 110 s treatment. For example, the
reductions after 120 s ohmic heating treatment were 4.37, 4.02, and
2.23 for E-control, E-15 °C, and E-NaCl, respectively. When enumerated
on resuscitation media (Fig. 2B), reduction levels of E-15 °C were higher
than the E-control while reduction levels of E-NaCl were lower than the
control after 110s treatment. For instance, the reductions following
120 s ohmic heating treatment were 2.68, 3.01, and 1.60 for E-control,
E-15 °C, and E-NaCl, respectively. Initial cell counts (log CFU/g) were
7.91, 8.44, and 7.59 for E-control, E-15 °C, and E-NaCl, respectively,

when enumerated on selective media. Initial cell counts (log CFU/g)
were higher when enumerated on resuscitation media resulting in 8.17,
8.57, and 8.26 for E-control, E-15 °C, and E-NaCl, respectively.

3.3. Heat stress related gene expression of E. coli O157:H7 ATCC 35150
grown under different conditions

Growth conditions had a significant effect on the heat stress related
gene expression of E. coli O157:H7 ATCC 35150 (Fig. 3). Some heat
stress related genes were induced by adding NaCl or decreasing tem-
perature in the growth medium. In particular, dnaK, rpoH, grpE, groES,
htpG, and htpX were up-regulated (≥5 fold change) for E-15 °C. The
relative gene expression levels were 11.3, 9.8, 8.86, 7.78, 7.59, and
5.15 for htpG, htpX, danK, grpE, rpoH, and groES, respectively (Table
S3). On the other hand, groEL, dnaK, and rpoH were up-regulated (≥5
fold change) for E-NaCl. The relative gene expression levels were 20.6,
7.52 and 7.48 for dnaK, groEL, and rpoH, respectively (Table S3).

3.4. Membrane lipid composition of E. coli O157:H7 ATCC 35150 grown
under different conditions

Growth conditions had a significant effect on the membrane lipid
composition of E. coli O157:H7 ATCC 35150 (Table 1 and Fig. S1). Both
low temperature and high NaCl concentration conditions increased
ratio of USFA. Even though growth conditions has no significant effect

Fig. 2. Reduction of E. coli O157:H7 ATCC 35150 subjected to ohmic heating in salsa after growth under different conditions and enumerated on Sorbitol MacConkey
agar (A) or Phenol red agar base with 1% sorbitol (B). Cell suspension incubated at 37 °C with 0.5% NaCl, 15 °C with 0.5% NaCl, or 37 °C with 4.5% NaCl represented
as E-control, E-15 °C, or E-NaCl, respectively.

Fig. 3. Relative expression levels of rpoS, groEL, dnaK, rpoH, grpE, groES, htpG,
and htpX of E. coli O157:H7 ATCC 35150 cultured at different conditions. Cell
suspension incubated at 37 °C with 0.5% NaCl, 15 °C with 0.5% NaCl, or 37 °C
with 4.5% NaCl represented as E-control, E-15 °C, and E-NaCl, respectively.
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on the relative content of lauric acid (C12:0), myristic acid (C14:0),
stearic acid (C18:0), heneicosanoic acid methyl ester (C21:0), or be-
heric acid methyl ester (C22:0), the relative content of palmitoleic acid
(16:1) increased by adding NaCl or decreasing temperature in the
growth medium while that of palmitic acid (16:0) decreased. As a re-
sult, the relative ratio (%) of USFA was the highest for E-15 °C (46.16)
followed by E-NaCl (18.50) and E-control (6.76), and ratios of USFA to
SFA were 0.07, 0.23, and 0.86 for E-control, E-NaCl, and E-15 °C, re-
spectively.

3.5. PI uptake levels of E. coli O157:H7 ATCC 35150 grown under different
conditions

Decreasing growth temperature had a significant effect on the PI
uptake levels of E. coli O157:H7 ATCC 35150 subjected to ohmic
heating (Table 2). PI uptake values increased as treatment time in-
creased regardless of growth conditions. Even though significant dif-
ferences were not observed for E. coli O157:H7 subjected to ohmic
heating for 40 s and 50s (p > 0.05), PI uptake values of E-15 °C were
significantly higher than that of E-control or E-NaCl when subjected to
ohmic heating for 60 s or 70s (p < 0.05). For example, the values after
70 s ohmic heating treatment were 58.3, 51.4, and 78.6 for E-control, E-
NaCl, and E-15 °C, respectively. In contrast to decreasing temperature,
adding NaCl to the growth medium had no significant effect on PI
uptake value.

4. Discussion

Growth conditions of decreasing temperature or increasing NaCl
concentration influenced the resistances of E. coli O157:H7 ATCC
35150 to ohmic heating in the present study. At first, resistance of the
pathogen decreased as growth temperature decreased from 37 °C to
15 °C. This result is in harmony with the previous research investiga-
tions reporting decreased heat resistance of foodborne pathogens grown
at low temperatures. Yang, Khoo, Zheng, Chung, and Yuk (2014)
identified that Salmonella Enteritidis grown at relatively low tempera-
tures (10 °C and 25 °C) exhibited lower heat resistance than cells grown
at relatively high temperature (37 °C and 42 °C). Leenanon and Drake

(2001) and Zhang and Griffiths (2003) also reported that thermal tol-
erance of E. coli O157:H7 appears to be lower under refrigeration
temperatures. In contrast to the effect of decreased temperature, the
resistance of E. coli O157:H7 ATCC 35150 to ohmic heating increased as
NaCl concentration in the growth medium increased from 0.5% to 4.5%
in the present study. Jørgensen, Stephens, and Knøchel (1995) also
reported that Listeria monocytogenes grown in medium of high NaCl
concentration showed greater thermotolerance than this pathogen
grown in normal medium. However, to the best of our knowledge, the
reason for decreased or increased heat resistance relative to growth
temperature or NaCl concentration is remains uncertain. In the present
study, it was assumed that heat shock response and alternation in
membrane lipid composition of pathogen contribute the resistance de-
crease or increase.

Bacterial heat shock response is involved not only in heat shock
stress, but is also involved in many unfavorable environmental condi-
tions (Ban, Kang, & Yoon, 2015). It is well known that induced heat
shock proteins play a significant role in the cross protection of bacteria
(Zhang & Griffiths, 2003). In this regard, we identified the genetic re-
sponse to the unfavorable conditions of low temperature (15 °C) or high
NaCl concentration (4.5%) in the present study. Several heat stress
related genes were activated by decreasing growth temperature or in-
creasing NaCl concentration. By increasing the NaCl concentration,
genes encoding heat shock proteins such as groEL and dnaK were in-
duced, which is in accordance with previous research investigations
(Duché, Trémoulet, Glaser, & Labadie, 2002; Solheim et al., 2014).
Additionally, rpoH, which regulates heat shock response, was also in-
duced in the present study. These results coincide with our finding that
resistance of E. coli O157:H7 ATCC 35150 to ohmic heating increased
after this bacterium was grown in medium of high NaCl concentration.
However, the resistance of E. coli O157:H7 ATCC 35150 to ohmic
heating decreased after growing at low temperatures even though heat
stress related genes such as dnaK, rpoH, grpE, groES, htpG, and htpX were
induced with decreasing growth temperature. From these results we
assumed that there must be another factor influencing the resistance of
the pathogen to ohmic heating. Because the cell membrane is a major
bactericidal target of thermal treatment, we paid attention to changes
in the cell membrane relative to growth conditions.

Many foodborne pathogens can survive under unfavorable condi-
tions by altering membrane fluidity (Beales, 2004). Regulating the ratio
of USFA to SFA is one way to retain membrane fluidity by E. coli
O157:H7 (Yoon, Lee, Lee, Kim, & Choi, 2015). In the present study, the
ratio of USFA to SFA increased slightly (+0.16) or significantly
(+0.79) with increasing NaCl concentration or decreasing tempera-
tures, respectively. Changes in fatty acid composition by decreasing
growth temperatures were reported previously. Casadei, Manas, Niven,
Needs, and Mackey (2002) reported that the fluidity index (ratio of
USFA to SFA) increased as growth temperature decreased in the range
of 45 °C–10 °C. It is crucial for bacteria to increase membrane fluidity by
altering the ratio of USFA to SFA because it enables membrane proteins
to continue to pump ions, take up nutrients, and perform respiration
(Berry & Foegeding, 1997). In contrast to the effect of growth tem-
perature, the major change in response to high NaCl concentration
occurs in the head group of lipids (Beales, 2004). Generally, the

Table 1
Total saturated fatty acid (SFA) and unsaturated fatty acid (USFA) of E. coli
O157:H7 ATCC 35150 after subjection to different cultuing conditions. Cell
suspension incubated at 37 °C with 0.5% NaCl, 15 °C with 0.5% NaCl, or 37 °C
with 4.5% NaCl represented as E-control, E-15 °C, and E-NaCl, respectively.

E-control E-NaCl E-15 °C

Total USFA 6.76 ± 0.13 Aa 18.50 ± 2.79 B 46.16 ± 1.33 C
Total SFA 93.24 ± 0.13 C 81.50 ± 2.79 B 53.84 ± 1.33 A
Ratiob 0.07 ± 0.00 A 0.23 ± 0.04 B 0.86 ± 0.05 C

a Values in the same row followed by the same letter are not significantly
different (p > 0.05).

b Relative content (%) of total saturated fatty acid (SFA) and unsaturated
fatty acid (USFA) were represented and ratio were calculated by dividing the
relative content of USFA to SFA (USFA/SFA).

Table 2
PI uptake value of E. coli O157:H7 ATCC 35150 subjected to ohmic heating after growth under different culturing conditions. Cell suspension incubated at 37 °C with
0.5% NaCl, 15 °C with 0.5% NaCl, or 37 °C with 4.5% NaCl represented as E-control, E-15 °C, and E-NaCl, respectivelya.

40 s 50 s 60 s 70 s

E-control 5.2 ± 0.7 Aa 23.6 ± 10.9 Aa 43.1 ± 5.4 Ab 58.3 ± 11.6 ABb
E-NaCl 7.2 ± 2.9 Aa 26.2 ± 11.2 Ab 41.2 ± 4.3 Abc 51.4 ± 11.0 Ac
E-15 °C 4.7 ± 2.8 Aa 28.1 ± 8.00 Ab 66.9 ± 4.5 Bc 78.6 ± 8.80 Bc

Mean values ± standard deviation.
Values in the same column followed by the same upper case letter are not significantly different (p > 0.05).
Values in the same row followed by the same lower case letter are not significantly different (p > 0.05).
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proportion of anionic phospholipids and/or glycolipids increases to
preserve membrane lipids in the proper bilayer phase when aw de-
creases by means of high NaCl concentration (Russell et al., 1995). This
is why the ratio of USFA to SFA increased only slightly (+0.16) by
increasing NaCl concentration in the present study. We postulated that
altered membrane fluidity to allow survival and growth under un-
favorable conditions would affect membrane damage by thermal
treatment.

In the present study, PI uptake values of E. coli O157:H7, which
represent cell membrane damage of this pathogen, were not sig-
nificantly influenced by increasing NaCl concentration at all treatment
times (p > 0.05). This result indicates that the cell membrane changes
induced by increasing NaCl concentration were not significant enough
influence cell membrane damage by ohmic heating. On the other hand,
PI uptake values of the pathogen increased significantly (p < 0.05)
with decreasing growth temperature when subjected to ohmic heating
for 60 s and 70 s. Increased membrane fluidity by means of the changed
USFA to SFA ratio may have influenced the cell membrane damage by
ohmic heating. Even though thermal inactivation is the major compo-
nent of ohmic heating, a non-thermal effect also has been reported
(Park & Kang, 2013). In particular, cell membrane pore formation was
revealed as important in non-thermal effect in the study of Park and
Kang (2013). Therefore, increased membrane fluidity associated with
decreasing growth temperature not only made the membrane more
susceptible to thermal damage but also more vulnerable to the non-
thermal effect of ohmic heating.

In conclusion, several heat stress related genes were up-regulated
when E. coli O157:H7 ATCC 35150 was grown at low temperature
(15 °C) or with high NaCl concentration (4.5%). Meanwhile, the ratio of
USFA to SFA in the cell membrane increased significantly or slightly for
the pathogen grown at low temperature or with high NaCl concentra-
tion, respectively. As a result, cell membrane damages were sig-
nificantly higher for the pathogen grown at low temperature
(p < 0.05) while no significant differences were observed for the pa-
thogen grown at high NaCl concentration (p > 0.05). For the pathogen
grown at low temperature, the effect of increased cell membrane da-
mage was dominant compared to heat stress related gene expression.
On the other hand, for the pathogen grown with high NaCl con-
centration, the effect of heat stress related gene expression was sig-
nificant while additional cell membrane damage was not observed.
Consequently, resistance of E. coli O157:H7 ATCC 35150 to ohmic
heating increased when grown with high NaCl concentration while the
resistance decreased for the pathogen grown at low temperature.
Because storage temperature and NaCl concentration of salsa vary de-
pending on the climate, season and type of product, respectively, pro-
cessing conditions for ohmic heating should be determined carefully
considering the growth conditions of E. coli O157:H7 ATCC 35150.
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